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Abstract

Lidar datasets have been crucial for documenting the scale and nature of human eco-

system engineering and land use. Automated analysis methods, which have been ris-

ing in popularity and efficiency, allow for systematic evaluations of vast landscapes.

Here, we use a Mask R-CNN deep learning model to evaluate terracing—artificially

flattened areas surrounded by steeper slopes—on islands in American S�amoa. Mask

R-CNN is notable for its ability to simultaneously perform detection and segmenta-

tion tasks related to object recognition, thereby providing robust datasets of both

geographic locations of terracing features and their spatial morphometry. Using train-

ing datasets from across American S�amoa, we train this model to recognize terracing

features and then apply it to the island of Tutuila to undertake an island-wide survey

for terrace locations, distributions and morphologies. We demonstrate that this

model is effective (F1 = 0.718), but limitations are also documented that relate to

the quality of the lidar data and the size of terracing features. Our data show that the

islands of American S�amoa display shared patterns of terracing, but the nature of

these patterns are distinct on Tutuila compared with the Manu'a island group. These

patterns speak to the different interior configurations of the islands. This study dem-

onstrates how deep learning provides a better understanding of landscape construc-

tion and behavioural patterning on Tutuila and has the capacity to expand our

understanding of these processes on other islands beyond our case study.
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1 | INTRODUCTION

Terracing is a hallmark of engineering in environments featuring high

topographic relief (Bevan et al., 2013; Brown et al., 2020; Healy

et al., 1983; Korobov & Borisov, 2013; Pérez Rodríguez &

Anderson, 2013; Sandor et al., 1990). These features provide founda-

tions of activities, most notably including habitation and agriculture, in

areas that are otherwise unfavourable or marginal for use across the

globe (Gadot et al., 2016; Quintus et al., 2017; Treacy &

Denevan, 1994). They are also persistent, providing an opportunity

for populations to build on generations of labour to engineer exten-

sive areas that allow populations and agricultural systems to grow

(Brown et al., 2020). Because of their persistence and the goal of

those constructing the terraces, these features change the environ-

ment, at times to such an extent that they have cascading conse-

quences on soil development and vegetation (Brown et al., 2020;

Hightower et al., 2014), among other things. Given their importance

in creating usable land within an otherwise marginal space, the docu-

mentation of terracing is an important step in understanding social

organization, agricultural development, the formation of anthropo-

genic environments and population reliance (Acabado et al., 2019;

Pérez Rodríguez, 2016).

Given their function, terraces are often found in relatively inac-

cessible locations. This is especially true in the global tropics, where
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terracing is not only located in areas of high topographic relief but also

under dense vegetation cover (Hightower et al., 2014; Quintus

et al., 2017). Because of this, estimates of terracing across landscapes

are difficult to generate and often extrapolate from smaller areas that

have been intensively mapped (Brown et al., 2020, p. 567). Lidar data-

sets have offered an opportunity to remedy this situation. Terracing is

often visible in images derived from lidar datasets given the contrast

between the anthropogenic elements of the feature and the sur-

rounding slopes (Chase & Weishampel, 2016; Hightower et al., 2014;

Macrae & Iannone, 2016; McCoy et al., 2011), though this depends

on the quality of the lidar dataset and the size of the features

(Sánchez Díaz & García Sanjuán, 2022). While diverse in function and

variable in morphology (Treacy & Denevan, 1994), basic elements of

terracing are shared worldwide as a result of convergent evolution.

Namely, these features all possess flat or near-flat surfaces with slop-

ing sides that contrast with the surrounding landscape. This contrast

in slope creates an opportunity for their identification (McCoy

et al., 2011).

Terracing is a common component of the archaeological record in

the Pacific (Addison, 2006; Bayliss-Smith & Hviding, 2015; Kirch,

1994; Kuhlken & Crosby, 1999; Lepofsky, 1994; Liston, 2009; McCoy

et al., 2011; Sand et al., 2003). These terraces were used for a variety

of functions, including habitation, agriculture and defence

(Allen, 2004; Best, 1993; Taomia, 2000). However, few studies have

attempted to map the full distribution of terracing across individual

islands given the financial and labour constraints of pedestrian survey

in tropical environments. The distribution of terraces can provide a

useful estimate of the scale of human impacts in these island environ-

ments given that terraces are a signature of intensified landuse

(Brown et al., 2020). The use of lidar datasets in Oceania offers an

opportunity to better track the scale of terracing across the region.

Within Oceania, remote sensing research demonstrates more

extensive and intensive land use than previously thought (Bedford

et al., 2018; Cochrane & Mills, 2018; Freeland et al., 2016; Jackmond

et al., 2018; Quintus et al., 2015). This, in turn, has led to a reconsider-

ation of population densities (Parton & Clark, 2022) and the ways that

communities supported those larger populations (Bedford et al., 2018;

Quintus, 2018). However, the analysis of lidar datasets has been spa-

tially limited and often based on manual feature extraction

(Davis, 2019). Manual feature extraction is useful (Quintus

et al., 2017), but automated extraction techniques allow for a more

systematic and efficient evaluation of larger stretches of the land-

scape (Bickler, 2021; Câmara et al., 2023; Cerrillo-Cuenca & Bueno-

Ramírez, 2019; Davis, 2019).

Advances in automated feature extraction provide the means to

both locate archaeological features across large swaths of landscape

as well as generate geospatial datasets of features that can be used

for further studies of feature size, shape and distribution

(e.g., Berganzo-Besga et al., 2021; De Smedt et al., 2022; Freeland

et al., 2016; Magnini et al., 2017; Verschoof-van der Vaart &

Landauer, 2020). This provides another tool for feature identification

and the development of distribution maps for subsequent analysis

within the archaeological context of a particular place (Bennett

et al., 2014; Huggett, 2021). We build on this research and introduce

a deep learning model to extract the locations and morphological

characteristics of artificial terraces from the sloping topography char-

acteristic of high islands in Oceania. Using training datasets from

American S�amoa, we apply the model to the island of Tutuila and

undertake an island-wide survey for terrace locations, distributions

and morphologies (Figure 1). We then discuss the implications of this

research for wider documentation of engineered landscapes across

Oceania.

2 | BACKGROUND

The Samoan archipelago lies in the central Pacific between 13� and

14� latitude south. Currently, the archipelago is split into two geopo-

litical units, the territory of American S�amoa and the independent

nation of S�amoa, though the archipelago has a shared cultural history.

Tutuila is the largest island of American S�amoa but the third largest

island of the Samoan archipelago. All the islands of American S�amoa

feature high drastic topographic relief, with narrow coastal plains that

skirt a steep volcanic landmass. The larger islands of S�amoa are gen-

tler in topography with developed valleys in some locations. Valleys

are not well developed in the islands of American S�amoa, though they

are more apparent on Tutuila than in the adjacent Manu's group,

which consists of the islands of Ofu, Olosega and Ta'u. Precipitation is

high, with annual averages in excess of 3000 mm along the coast and

higher in the interior. As such, these islands are densely vegetated

with a mix of native rainforest and introduced economic species.

These characteristics have made traditional pedestrian survey in

island interiors difficult. Prior to the use of lidar datasets in the

archipelago, pedestrian surveys in the interiors were localized or

nonintensive (Best, 1993; Clark & Herdrich, 1993; Hunt &

Kirch, 1988; Pearl, 2004). While terracing and other forms of land-

scape modification were recorded during these initial surveys, it was

generally assumed that the focus of land use was on the coast dur-

ing the entirety of the cultural sequence that began by 2800–2400

calBP across the archipelago (Green, 2002). The acquisition and use

of lidar data have fundamentally altered these views, at least for the

Manu'a group and parts of S�amoa (Glover et al., 2020; Jackmond

et al., 2018; Quintus et al., 2015, 2017). In Manu'a, paired pedes-

trian surveys and manual analysis of lidar datasets have allowed

documentation of the full distribution of terracing on the island of

Ofu and Olosega (Quintus, 2020). These features are relatively large.

While the mean size varies from one community to the next, all

means are over 140 m2. As such, these features are visually appar-

ent in products derived from even coarse-grained lidar datasets.

From these analyses, it is estimated that terracing encompasses over

30% and 60% of each island's interior, respectively (Quintus, 2018).

Likewise, applications of lidar datasets to archaeological survey in

S�amoa have provided novel insights into the high density of occupa-

tion in some locations (Glover et al., 2020; Jackmond et al., 2018).

These results highlight how extensively these interior landscapes

were used and modified.

2 QUINTUS ET AL.
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Lidar analysis in Manu'a and S�amoa has been largely accom-

plished using manual feature extraction (Jackmond et al., 2018;

Quintus et al., 2017). These techniques were successful in Manu'a, in

part, because of the size of islands, which are all under 36 km2. In

S�amoa, researchers using manual extraction techniques have largely

focused on specific locations rather than island-wide surveys

(Jackmond et al., 2018). While manual feature extraction has no doubt

been important, the time necessary for such techniques at the scale of

individual islands limits the full potential that these lidar datasets may

have in illustrating the full spatial extent of landscape transformation,

which may provide useful data on the density of occupation and the

drivers of settlement decision making.

Recently, the use of semiautomated techniques has proven useful

for such island-scale surveys (Glover et al., 2020), and the use of auto-

mated feature extraction techniques offers another mechanism to

scale up these analyses even more (Freeland et al., 2016). Machine

learning and, specifically, deep learning hold the potential to increase

the efficiency and success of lidar analysis across Oceania. Deep

learning through convolutional neural networks (CNNs) has been

applied with varying levels of success in other regions around the

world (e.g., Agapiou et al., 2021; Bonhage et al., 2021; Davis

et al., 2021; Guyot et al., 2021; Somrak et al., 2020; Soroush

et al., 2020; Trier et al., 2019; Verschoof-van der Vaart et al., 2020),

and some approaches have successfully identified features even when

training datasets are minimal (e.g., Davis et al., 2021). CNNs work by

taking inputs from tensors (multidimensional matrices) to quantify

multidirectional patterns, which allow neighbouring pixels to influence

identifications (Caspari & Crespo, 2019). With the development of

more sophisticated CNN architecture (e.g., Mask R-CNN), these

methods can be used not only to identify objects in image data but

also segment them (i.e., digitize the object's shape). As such, these

methods provide the capacity to expand not only archaeological pro-

spection efforts but also larger studies of sociopolitical organization,

population densities and (in)equality, among others that rely on fea-

ture morphology and spatial distributions.

Agricultural terraces, more specifically, have been successfully

identified in lidar data using semiautomated approaches in different

places, globally (e.g., Capolupo et al., 2018; Duarte et al., 2018). More

recently, the use of automated detection for terrace detection has

been applied with success in places like Peru, where researchers used

F IGURE 1 Islands and archipelago mentioned in the text. (a) The island of Tutuila. Note the heavily vegetated interior, which is the subject of
our analysis. (b) The Samoan archipelago. (c) The position of S�amoa in Fiji-West Polynesia. [Colour figure can be viewed at wileyonlinelibrary.com]
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deep learning to identify architectural elements throughout the

900-ha Kualep Complex (Righetti et al., 2021). Similarly, Herrault et al.

(2021) compared traditional machine learning (random forest) to deep

learning methods (fully connected network [FCN]) to identify agricul-

tural terraces in Germany. They find that while random forests

appeared to perform better than FCNs, deep learning can adapt to

previously unseen data even with limited available training examples

and remains minimally affected by certain labelling errors. Thus, deep

learning has great potential for identifying archaeological features in

lidar data, like terraces, across landscape scales.

To our knowledge, CNNs have only recently been applied to

archaeological lidar analysis in New Zealand (see Bickler &

Jones, 2021), but elsewhere in the Pacific, these methods have not

yet been introduced. Here, we demonstrate the utility of deep learn-

ing approaches at a large spatial scale by producing a useful model to

allow for the detection of terraces using training datasets from across

American S�amoa. We show how this model can be successfully

employed on Polynesian high islands, using an island-wide survey of

Tutuila as a case study, increasing its value and building on prior work

using manual feature extraction (Cochrane & Mills, 2018). This is

important as survey coverage across S�amoa and other high islands in

the region remains far less than ideal because of the cost and time

commitment. Finally, we highlight how the segmentation of features

enabled through Mask R-CNN models, rather than just merely identi-

fication, lends itself to further analysis.

3 | METHODS

The primary lidar data used in this study to create and test the Mask

R-CNN model derives from the National Oceanic and Atmospheric

Administration (NOAA). Data collection was performed in 2012 by

Photo Science, Inc. (Raber, 2012) using a Beechcraft King Air 90 twin-

engine aircraft outfitted with an Optech Gemini sensor for all islands

of American S�amoa. Data were manipulated originally in Optech Soft-

ware (GeoCue, TerraScan and TerraModeler) where they were also

classified using project-specific macros. Lidar was collected with an

average point spacing of 0.838 m and an average point density of

1.43 pts/m2 over 108 flight lines between June 2012 and July 2012.

The RMSEz for Tutuila was calculated at 0.067 m while metadata indi-

cates that collection was undertaken to meet a vertical accuracy of

0.15 m and a horizontal accuracy of 1.2 m or better. We use publicly

available DEMs produced using the aforementioned lidar data by

NOAA's Office for Coastal Management (OCM) with a resolution of

1 m (OCM, 2022). Additional information can be found at OCM

(2022).

We also make more limited use of an additional dataset to assess

the generalizability and applicability of the model trained in American

S�amoa. This dataset was collected by the Samoan government

between July and August 2015 for the Ministry of Natural Resources

and Environment (MNRE) by Fugro Geospatial Services using a RIEGL

LMS-Q780 Lidar system fitted onto a AusJet Cessna 441. The survey

occurred at a height of 650 m and a maximum speed of 130–140

knots. Data collection used a laser rate of 350 kHz and a line spacing

of 423 m, with a minimum pulse density of 4 points/m2. Due to cloud

cover and flying difficulties at high elevations, data gaps occur. Data

were collected to produce a minimum vertical accuracy of 0.30 m and

a minimum horizontal accuracy of 0.80 m. A lidar-derived bare earth

DEM was created in ArcGIS Pro (ESRI, 2021) using the LAS to Raster

tool. The tool input used a binning interpolation type, with an average

cell assignment and linear void fill method. The output cell size was

1 m. This dataset was not used to train the model; rather, it was used

only to evaluate whether the model could identify terracing in lidar

datasets produced using different methods relative to that produced

in American S�amoa.

Using these lidar-derived DEMs, we created a series of raster

visualizations to help accentuate terracing features and topographic

anomalies on the landscape. We tested a variety of visualizations, but

the best performance was achieved using a three-band composite

consisting of Terrain Ruggedness Index (TRI; Riley et al., 1999), Posi-

tive Openness and Slope. We assessed visualization performance by

comparing CNN model accuracy scores and training loss values along-

side manual evaluation of CNN predictions. TRI is a mathematical rep-

resentation of topographic heterogeneity, which can help identify

topographic modifications. TRI calculates the change in elevation

between a pixel and its surrounding eight neighbours (Riley

et al., 1999). Researchers have successfully used TRI (derived from

LiDAR and other sensors) to characterize terrain and geomorphologi-

cal properties like landslides and soil carbon content (Sharma

et al., 2021), including as a parameter in CNN applications (R�ożycka

et al., 2017). We calculated TRI using SAGA v.7.9.1 (Conrad

et al., 2015) with the following parameters: Search Mode = Circle;

Search Radius = 1; No Distance Weighting. Openness is a measure of

the angular relationship between surface relief and horizontal dis-

tance, which express the degree of enclosure or dominance of a loca-

tion on an irregular plane (Yokoyama et al., 2002). There are two

forms of openness: Positive openness, which emphasizes convexity,

and negative openness, which emphasizes concavity. Here, we used

SAGA v. 7.8.2 (Conrad et al., 2015) to calculate positive openness

with the following parameters: Radial Limit = 1000; Method = Line

Tracing; Multi Scale Factor = 3; Number of Sectors = 8. Finally, slope

was calculated within ArcGIS Pro. Once all of these visualizations

were made, we merged the three datasets together using the raster

merge tool in ArcGIS Pro and saved the file as an 8-bit image for fur-

ther analysis using deep learning.

ArcGIS Pro contains built-in libraries for deep learning, which

have been used successfully for archaeological applications

(e.g., Agapiou et al., 2021; Bickler & Jones, 2021; Davis et al., 2021;

Davis & Lundin, 2021). To implement deep learning within the ArcGIS

Pro environment, input data must be a multiband raster. Here, we use

ArcGIS Pro v. 2.8.1 (ESRI, 2021) to train a Mask R-CNN model (He

et al., 2017). We chose this algorithm both for its proven performance

in other case studies with limited and extensive datasets (e.g., Davis

et al., 2021), and its ability to simultaneously perform detection and

segmentation tasks related to object recognition (Figure 2). As such,

our output provides both coordinates of terracing features and their

4 QUINTUS ET AL.
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spatial dimensions, which can be used for further spatial analyses of

agricultural and residential activities in S�amoa.

Our training data consisted of 1254 preidentified terrace struc-

tures on the four main islands of American S�amoa (Tutuila, Ta'u, Olo-

sega and Ofu). The large majority of these are from the Manu'a group

with a smaller, dispersed sample from Tutuila. We created training

data in ArcGIS Pro using the Label Training Data for Deep Learning

Analysis tool. Training data were created in Mask R-CNN format with

a tile size of 150 � 150 pixels and a stride size of 75 � 75 pixels.

Optimal tile sizes were determined by trial and error. During this pro-

cess, additional images are created that contain areas without terrac-

ing, which can happen as a byproduct of chosen window sizes when

some terraces get cut off. This resulted in the use of 1438 separate

images by the model. The inclusion of blank images can also help train

the algorithm to recognize regions with and without features of inter-

est, and future work can include additional classes containing nonter-

race features that are commonly misclassified (e.g., Davis et al., 2019,

2021).

We trained a Mask R-CNN model with an unfrozen resnet152

backbone model and a batch size of 8. The model was set to train for

75 epochs (or until improvements stopped). Following model training,

we used the Detect Objects using Deep Learning Tool to identify ter-

racing features on Tutuila. We used the following parameters:

padding = 0; batch size = 8; threshold = 0.05; Return_bbox-

es = False; Tile_Size = 400, 500, 600; Non-Maximum Suppression

with a max overlap ratio = 0.15. Padding designates a region around

the edge of the detection window where the model will not identify

features. The batch size refers to the number of images the model

processes at a given time. Residual Network (ResNet) (He et al., 2017)

is a transfer learning architecture, which is a process where previously

trained models can serve as a baseline for training new models, even

when the target of these models is different. ResNet152 is trained

using the ImageNet dataset (consisting of over 1 million images) with

152 convolutional layers. We trained the model on an unfrozen

ResNet model because there were no prior models trained for archae-

ological terrace detection from this area. The threshold refers to the

confidence score at which the model will return positive detections,

and the “return_boxes” parameter will draw bounding boxes around

detected features when True (the default) and will create segmented

feature outlines when False. The optimal learning rate was calculated

using a learning finder (see Smith, 2017) and 10% of the training data

was withheld from training to help validate the model performance

prior to applying the model across Tutuila. All deep learning analysis

was conducted on a computer with a NVIDIA Quadro p4000 GPU, an

Intel® Core™ i7-7700K CPU @ 4.20 GHz, 4200 MHz, 4 Core(s), 8 Log-

ical Processor(s) and 64 GB of RAM.

Areas of contemporary development are well demarcated on

Tutuila. While we ran the model over these regions, all detections

within areas of modern development were manually removed by com-

paring feature identifications to the World Imagery base map in Arc-

GIS Pro. We do note that while the differences between modern and

past geomorphic engineering are visually distinctive (e.g., sharpness of

corners), modern terraces were consistently identified and a small

number may be retained in our results. We ran this detection algo-

rithm three separate times with tile sizes of 400, 500 and 600 and

combined the results to evaluate performance (Table 1). By using mul-

tiple thresholds, we maximized our true positives while minimizing

false negatives. The combination of these results was undertaken

using the Merge tool. This was followed by the Aggregate Polygons

tool to remove repetitive identifications. This procedure produces the

largest potential boundaries for each identification. Finally, all identifi-

cations under 5 m2, a threshold based on known sizes of terraces, and

some feature vertices were edited to remove extraneous components.

Subsequent spatial analyses were performed in ArcGIS Pro using the

Geoprocessing toolbox.

4 | RESULTS AND ANALYSIS

The results of model training and performance are illustrated in

Figure 3. The model ran for 68 epochs with an optimized learning rate

of 3.63078e�06 and over 7000 terraces were identified after data

cleaning. The efficacy of the model at the scale of individual features

was tested against three maps, georeferenced in ArcGIS Pro, across

different topographical settings on Tutuila in Tatagamatau (combina-

tion of south-facing hillslope and ridgeline), Fagasa (north-facing and

narrow primary and east-facing secondary ridgeline) and Malaeimi

(along a single south-facing secondary ridgeline) (Figure 5; see

Best, 1993). Maps produced for these sites show the location and

boundaries of individual terraces, which have proven effective for

past assessments of lidar feature extraction (Cochrane & Mills, 2018).

While we did document slight but clear spatial discrepancies in these

maps and our results, even when it was clear the same feature was

represented, they represent the lone mechanism by which we can

evaluate our results at this spatial scale. As noted by Cochrane and

Mills (2018), some clear terraces are missing from the pedestrian maps

F IGURE 2 Illustration of traditional object detection compared
with instance segmentation. Mask R-CNN's can perform instance
segmentation, whereby the exact boundaries of identified objects are
outlined (in red). Traditional object detection usually relies on
bounding boxes, wherein objects are detected (red boxes) but
morphological information is not provided. [Colour figure can be
viewed at wileyonlinelibrary.com]
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of Tatagamatau and Fagasa. As such, care should be taken in inter-

preting false positive results. Results are presented in Table 1.

Our results indicate that the model is conservative but effective.

Not surprisingly, the density of ground points impacted the success of

the model. An average ground point density of less than 0.5 pt/m2

across areas of the interior uplands (see Figure 4) reduces the model's

ability to locate some kinds of features, as has been previously noted

elsewhere in the world (Sánchez Díaz & García Sanjuán, 2022). In our

case, low ground return density affects the visibility of small features,

which are known to be difficult to document in the archipelago, even

using manual extraction techniques (Quintus et al., 2017). The effect

of feature size on feature identification is indicated by the significant

difference in mean size between true positives (median = 193 m2)

and false negatives (median = 75 m2) (see Figure 5; Kruskal–Wallis

Test; H value 38.79; p < 0.001). The small size of the feature results in

a lower likelihood that ground returns, especially multiple ground

returns, derive from the terrace surface, reducing the contrast

between the feature and the surrounding slope. This results in a “fuzz-
iness” to the feature comparable to degraded mounds that blend into

the landscape because of erosion (see Forest et al., 2020). Larger fea-

ture size creates a higher likelihood that multiple ground returns will

derive from the feature, making it more likely that the feature will

contrast with surrounding slopes. As such, the model is quite useful in

providing a minimum number of terraces in a particular area and

seems to capture larger terraces effectively. Topographic setting may

also influence the visibility of terracing in this lidar dataset, with those

features on hillslopes more likely to be true positives as opposed to

those on ridgelines (68% vs. 51%; χ2 = 4.075; p = 0.044). However,

this may also be due to terrace size as terraces on ridgelines are smal-

ler than those on hillslopes (median = 105 m2 vs. 166.5 m2; H value

7.27; p = 0.007). We also assessed our results at a more general level,

based on the location of known concentrations of terraces, though

these concentrations have not been mapped in detail. In each case,

the Mask R-CNN model performs well in identifying the location of

known concentrations in the context of the wider landscape

(Figure 6). Thus, the model performs well at both the individual fea-

ture and site level, with some exceptions based on terrace size, even

though the mean density of ground returns is below 0.5 points/m2 for

some areas of the interior uplands. As demonstrated in Figure 4, the

majority of the study area contains lidar coverage with 0.1–2.5

points/m2. When considering the median terrace size of 135 m2 in

the ground truthed dataset, the average terrace contains at least

13 lidar return points. This number of return points provides enough

detail to identify the outlines and basic topographic properties of

TABLE 1 Performance of Mask R-CNN model judged using previously developed maps. Note the better performance of the combined
dataset relative to those produced by single window sizes.

Window True positives False positives False negatives Precision Recall F1 statistic

Combined 80 4 59 0.576 0.952 0.718

400 m 67 2 72 0.482 0.971 0.644

600 m 67 2 72 0.482 0.971 0.644

500 m 60 4 79 0.432 0.938 0.592

F IGURE 3 Results of model training
and performance. The two curve loss
values associated with the training and
validation datasets, where the lower the
loss, the better the model performance.
[Colour figure can be viewed at
wileyonlinelibrary.com]
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moderate and large-sized terraces, as our results confirm. Importantly,

though, small terracing does not contrast with the surrounding slopes

at this data resolution.

The model likely performs best where the general slope gradient

is steepest, as it is in those environments where the constructed

terrace contrasts markedly with the surrounding slope (McCoy

et al., 2011). All of the lidar derivatives (i.e., slope, roughness and

openness) we used as inputs highlight those contrasts. While we cur-

rently lack pedestrian data to evaluate model performance in flat

ground, the characteristics of the input combined with visual

F IGURE 5 Comparison of terrace size and types of feature identifications. FN = false negative; TP = true positive.

F IGURE 4 The density of ground points across the island of Tutuila. The interior features a mix of areas with ground return densities above
and below 0.5 points/m2. The triangular shape in the lower centre of the figure is the modern runway. [Colour figure can be viewed at
wileyonlinelibrary.com]
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inspections suggest identifications in lower slope locations are more

suspect. This is especially the case of contiguous areas of less than 5�

slope, of which there are few in the interior uplands. However, there

is a noticeably large area located in the island's western uplands. The

training datasets lack terraces from such gradual slopes. While terrac-

ing is far less useful in these low-slope environments, data from adja-

cent islands in American S�amoa does indicate that a small proportion

of terraces are found in these locations (Quintus et al., 2022).

4.1 | Preliminary test of model applicability

The utility of the model for regions outside of American S�amoa is

demonstrated by applications to the Nation of S�amoa. Using the

same model trained on data from American S�amoa, we successfully

identified terraces across the entire island of Apolima located

�200 km away from our original training and test areas (Figure 7).

The method provides a representation of terracing across the

F IGURE 6 Locations of previously documented terrace concentrations (named locations) compared with terraces identified during this
project, outlined in yellow. The boundaries of these sites have never been clearly published and our results suggest they are part of relatively
continuous distributions of terraces. [Colour figure can be viewed at wileyonlinelibrary.com]

F IGURE 7 Terrace identifications on Apolima using the Mask R-CNN produced using training data from American S�amoa. The yellow
polygons in the image on the right demarcate potential terraces. The island, generally, has a gentler topography relative to Tutuila, and lidar data
were collected at a different time using different equipment. Darker colours signify lower slope gradients. [Colour figure can be viewed at
wileyonlinelibrary.com]
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island's landscape despite not retraining the model with new data.

While still a part of the Samoan archipelago, Apolima is unique

given its gentler topography and small size. The methods of lidar

data collection were also distinct (see methods above), which

implies the model is not overfitted to the methods of data acquisi-

tion used in American S�amoa. While our investigation is ongoing,

and ground evaluation remains to be conducted, this provides

greater evidence for the method's applicability beyond the bounds

of our initial training area and lidar data collection. This is

something that few other automated archaeological remote sensing

studies have managed to achieve.

4.2 | The nature and distribution of terracing
across Tutuila

Our identifications allow us to assess the density of terracing across

Tutuila's interior even though it is a conservative estimate. To facili-

tate analysis, we assume that factors that affect the identification of

terracing are similar in similar topographic settings in different parts of

the island; the identified features represent something of a stratified

random sample of features, with sampling strata being topographic

settings. Certainly, some topographic settings are more frequent in

some parts of the island than others, which could affect our results.

Differential ground returns could also influence our results, though

this does not appear to be the case as terrace density is not correlated

with ground return density (r2 = 0.014; F = 2.13; p = 0.15) nor is

mean terrace size (r2 = 0.007; F = 1.04; p = 0.309). Finally, we

remove from consideration terraces from areas of contiguous slope of

less than 5� in evaluating terrace density given our lack of pedestrian

data from these locations.

The density of identified terraces is uneven (Figure 8), with the

highest concentrations located in the western and central third of the

island. This is impacted by the distribution of suitable slopes. Prior

research in Manu'a has shown that most of the terracing is located in

areas of less than 25� slopes (Quintus et al., 2015, 2022). This holds

true on Tutuila as well, though terracing is more frequent in slightly

steeper slopes relative to Manu'a. The number of terraces built in an

area declines substantially with an increased slope gradient; 87% of

features were built in areas with slopes of less than 25�. Such slopes,

along with access to more expansive agricultural lands, make the

western side of the island more suitable for expansive human engi-

neering through time. Furthermore, terrace size decreases as the slope

gradient increases (Figure 9). This implies a real technological or

labour constraint on the construction of terraces, which leads to

fewer and smaller features being constructed in less suitable topo-

graphic settings. We posit that this likely relates to the fact that more

fill material would be needed to increase the width of terracing on

steep slopes, which requires more labour.

The size of terracing on Tutuila is comparable to terraces in the

Tamatupu site on Olosega island, though the mean (290 m2) and

median (251 m2) terrace sizes are different on Tutuila compared with

other sites in Manu'a (Quintus, 2020). It is likely that the actual mean

and median terrace size is slightly lower on Tutuila as we do not iden-

tify all small features. The mean size of terracing is uneven across the

island (Figure 10). In our dataset, terracing is clustered by size

(Moran's I; Moran's index = 0.0603; Expected = �0.000135;

z score = 15.29; p = 0.00). However, relatively few features on Tutu-

ila are part of these statistical hot spots (9%), drawing a distinction

with the Manu'a group (Quintus et al., 2022). Many of the clusters

identified by Moran's I test are in the western and central thirds of

the island with only one in the eastern third. This lone cluster is the

F IGURE 8 Density of terracing across the island of Tutuila. [Colour figure can be viewed at wileyonlinelibrary.com]
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previously documented site of Lefutu, which has long been consid-

ered unique in the area (Clark & Herdrich, 1993; Pearl, 2004). Some

clusters of large features are located near contemporary infrastruc-

ture, and it is possible that at least some larger terraces are historic

but overgrown (i.e., Fagasa). Significant clusters of small terraces (cold

spots) are noticeably rarer and smaller. Most terraces are not

clustered by size at the island-wide scale, highlighting the

dispersed nature of settlement. Even when clustered, the size of such

clusters is substantially smaller than that documented for Manu'a

where the size of nucleated settlements is conditioned by the small

size of the islands and the gradual interior slopes of the uplands

(Quintus et al., 2022).

F IGURE 9 The relationship between terrace size and slope.

F IGURE 10 Mean terrace size across Tutuila in m2. Each cell is 1 km2. Each cell average is based on a different number of terraces located
within each cell. [Colour figure can be viewed at wileyonlinelibrary.com]

10 QUINTUS ET AL.

 10990763, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/arp.1909 by C

olum
bia U

niversity L
ibraries, W

iley O
nline L

ibrary on [14/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://wileyonlinelibrary.com


4.3 | Terracing and defensive infrastructure

Fortifications are one of the most marked elements of the interior

landscape of Tutuila. These defensive features have been identified

across the island (Best, 1993; Clark & Herdrich, 1993; Cochrane &

Mills, 2018), but the full distribution of defensive features has not

been documented. Terracing is a key component of these defensive

features, along with associated infrastructure like ditching and banks,

and examination of our results presents an unanticipated opportunity

to highlight the distribution of fortifications at the island scale. While

not all defensive features are identifiable in our results and, therefore,

we cannot yet examine the spatial distribution of these fortifications

in detail, we are able to better understand the morphological variabil-

ity (Figure 11a–c) and relative density across the island thanks to the

data generated by our Mask R-CNN model.

We identified 46 complexes that appear to have some defensive

functionality (Figure 11), defined as features that prohibit access to

some location. Not surprisingly, most visible defensive features are

found in the centre and western thirds of Tutuila, with few large-scale

defensive features identifiable in the east. In contrast, there are clear

concentrations of defensive earthworks around Masefau Bay, as

noted in Cochrane and Mills (2018), as well as overlooking Pago Pago

Harbor. That such defensive features would be built in these locations

is unsurprising as these bays represent two of the largest on the

island. The largest fortification on the island, however, is located fur-

ther west, constituted by expansive terracing and at least six ditches

and banks. The primary ditches and banks cover some 13 ha with

somewhat nucleated terracing found within a 37-ha area upslope of

these features (Figure 11b).

5 | DISCUSSION

Lidar datasets are becoming increasingly available across Oceania as

island nations seek to gather data by which to document the effects

of climate change. While not their primary purpose, these datasets are

useful for archaeologists (Bedford et al., 2018; Cochrane &

Mills, 2018; Freeland et al., 2016; Parton & Clark, 2022; Quintus

et al., 2015, 2017). The challenge for archaeologists is to generate

methods that efficiently and accurately allow for the extraction of

useful archaeological information.

Here, we have trained a deep learning model using a Mask

R-CNN architecture to extract the location and morphology of

archaeological terracing features. We demonstrate that this model is

F IGURE 11 (a) The distribution of identified likely fortifications across Tutuila. Red stars are likely defensive features while the yellow
rectangles define the extent of the inserts. From left to right on the top image: (b) The largest fortification identified with a series of at least six
ditches located downslope of and defending a group of terraces. (c) A fortification in central Tutuila constituted by several terraces and a few
ditches. (d) A fortification in eastern Tutuila with terracing, banks and ditching protecting the intersection of several ridgelines. [Colour figure can
be viewed at wileyonlinelibrary.com]
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effective, judging from comparison with previously mapped sites that

included terracing. However, limitations are also documented relating

to the nature of the lidar dataset and the features themselves, specifi-

cally uneven ground point density and feature size. Even with these

constraints, we expect that this model will be broadly useful as a tool

to supplement more targeted pedestrian surveys, providing a fuller

picture of land use in these relatively inaccessible areas.

On Tutuila, our results demonstrate large-scale manipulation of

slopes, further highlighting and building upon previously documented

expansive interior land use (Clark & Herdrich, 1993; Cochrane &

Mills, 2018; Day, 2018). These data illustrate shared patterns across

the islands of American S�amoa. Terracing is the dominant archaeologi-

cal feature class in the uplands of these islands, which clearly relates

to the constraints of living in a high island environment. Dating of ter-

races in American S�amoa highlights the persistent utility of the tech-

nology, but also the use of terraces prior to the settlement of East

Polynesia (see Carson, 2006; Quintus et al., 2020), indicating that ter-

racing was part of the Polynesian transported landscape (after

Kirch, 1982). Furthermore, the size of terracing on Tutuila is similar to

that on Olosega, though mean terrace size is larger than on the other

islands of Manu'a. The somewhat consistent size combined with the

illustrated limiting factor of slope indicates that communities across

the Samoan archipelago dealt with similar technological challenges.

Still, several elements of the nature and patterns of interior land

use on Tutuila are dissimilar to that documented for the islands of

Manu'a (Quintus, 2020; Quintus et al., 2015, 2022). Terracing and set-

tlement, more generally, are more nucleated in Manu'a relative to

Tutuila, with more defensive infrastructure present in the latter case.

The documentation of a larger number of likely defensive features on

Tutuila is consistent with results also from neighbouring Tonga

(Parton et al., 2018). Terracing is far more frequent along ridgelines on

Tutuila compared with the situation in Manu'a. These patterns speak

to the different interior configurations of the islands. Relatively con-

tiguous slopes under 20� are rare on Tutuila. In contrast, coastal plains

were more developed with some deep and productive bays, which do

not exist in Manu'a. This, we hypothesize, led to an increased focus

on coastal settlement on Tutuila with more targeted and generally less

intensive residential use of the interior uplands. Within this context

wherein settlement was focused on valleys with productive bays,

defensive features on ridgelines that border these deep harbours are

useful, though defensive infrastructure is also found associated with

basalt extraction sites. Such defensive features are less useful and

rarer in Manu'a where second millennium AD settlement seems more

concentrated in the interior uplands. These locations are naturally for-

tified by remnants of former sea cliffs.

We anticipate that future research may be able to use our data to

better understand the drivers of morphological variation across defen-

sive features. There is no doubt that some of this variability is caused

by topographic differences. However, we also expect that other fac-

tors are contributing, such as viewshed. Capturing the size and mor-

phology of these features, as accomplished using Mask R-CNN

models, allows assessment of these questions. The trained model

developed here is provided as a supplemental file to aid researchers in

this endeavour and can provide a baseline for future studies focusing

on other areas. Pairing this dataset with targeted field investigation is

certainly desirable.

5.1 | Limitations of our study and AFE

While the model is effective, challenges were also experienced. Dif-

ferential ground point density, feature size and the degree of slope all

influence the likelihood that true features will be identified. Models

similar to the one used here are less effective where features are con-

sistently under 100 m2 and where features were built on slopes under

10�. Low ground return density is also problematic, especially in terms

of identifying small features, as the low number of ground returns that

derive form the feature surface reduce the contrast with the slope.

Within this context, one reason for our success is the generally large

size of terraces in S�amoa. Furthermore, we noted the presence of arti-

ficial boundaries for some positive identifications that related to the

position of the window during analysis. This created straight edges on

the polygon, cutting the size of the terrace down or creating two iden-

tifications for a single feature. Using multiscale windows helped ease

some of these issues (also see Guyot et al., 2018), but also increased

manual data-cleaning needs. To increase the utility of these data for

further spatial analysis, as was the goal here, manual cleaning was

necessary to correct some errors in drawn feature boundaries. Such

manual processing was also needed to eliminate areas of contempo-

rary development as modern villages in S�amoa make use of terraces.

These terraces tend to be morphologically distinct, with sharper edges

caused by the use of heavy machinery, but these still need to be man-

ually removed. This sort of cleaning process is typical in many AFE

studies (Davis et al., 2019; Meyer et al., 2019; Meyer-Heß, 2020).

Data cleaning required roughly 2 weeks of additional work. Even with

data cleaning, the use of automation reduced substantially the amount

of work necessary to produce the dataset relative to if we had used

manual extraction (cf. Quintus et al., 2017), reducing identification

and digitizing tasks from a months-to-years long endeavour to a cou-

ple of weeks.

The identification of modern infrastructure highlights another

constraint. These interior uplands are palimpsests in which modern

terraces are the last layer added to an already layered landscape (see

chronological data for other areas in American S�amoa in Quintus

et al., 2022). Unlike modern terraces, though, the terracing from ear-

lier time periods is not morphologically distinct enough to differenti-

ate them. This poses certain challenges in interpreting demographic

and settlement patterns, as other researchers have noted (Grammer

et al., 2017; Henry et al., 2019). Because of this, the pairing of

remotely identified features with more targeted pedestrian survey,

test excavation and historical analysis is important (Johnson &

Ouimet, 2018; Quintus et al., 2022; Sugiyama et al., 2021). The incre-

mentally accumulative nature of this form of landscape engineering

gives the impression of a fuller landscape than may ever have existed

at one time, though the extent of modification is still a robust measure

of cumulative human impacts. Such palimpsests can also provide

12 QUINTUS ET AL.
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estimates of which locations of a landscape were most frequently and

intensively occupied over time, as well as those areas where habita-

tion or other activities were sporadic or avoided (Freeland et al.,

2016; Ladefoged et al., 2011; Sugiyama et al., 2021). Documentation

of feature locations, and the nature of features across space, is also a

first step in generating robust models of settlement and demographic

change (Carter et al., 2018; Klassen et al., 2021; Ladefoged

et al., 2011) as well as in tracking archaeological preservation and

stewardship (Sugiyama et al., 2021).

It should be noted that many of these limitations are not unique

to the Pacific and are issues all archaeologists must contend with. Ulti-

mately, we must use the data available to us, and oftentimes these

data are not complete or ideal. Nonetheless, what this study demon-

strates is that methods can still be deployed that can effectively

extrapolate archaeological information from datasets with mixed

levels of quality. Ultimately, all AFE studies will be incomplete, as it is

impossible (and often unnecessary) to identify every single feature in

an area. To the contrary, many studies can lead to significant advances

in archaeological knowledge even without high levels of accuracy (see

Arnoldussen et al., 2022; Verschoof-van der Vaart & Lambers, 2022).

Our results, despite lower quality lidar data coverage in certain

areas, will greatly enhance our knowledge of terracing and settlement

activities in S�amoa. Archaeological research in S�amoa remains limited.

The availability of lidar datasets, even if not ideal, and the potential to

use AFE methods allows a substantially more robust examination of

the archaeological record than would otherwise be feasible. While

ground return densities are low in many areas of the island, our

approach can identify larger and well-defined terracing features with

a relatively high degree of precision and accuracy, and this has great

utility because it can expedite ground visits and further archaeological

study in otherwise hard to reach places where surveys are difficult.

Furthermore, our study provides data on terrace size and distribution

that can be used to direct future hypothesis-driven research exploring

demographic trends, the rise of territoriality and agricultural

development.

6 | CONCLUSIONS

The use of Mask R-CNN models shows significant promise for gener-

ating accurate morphological and spatial information pertaining to

archaeological features that go beyond simple prospection efforts.

The ability of these models to segment identifications allowed us to

attain accurate estimates of feature size, area and clustering patterns,

which are not achievable (without considerable mathematical manipu-

lation; e.g., Verschoof-van der Vaart et al., 2022) using other models

that simply provide a bounding box around identified features

(Figure 1). The generation of fully analysable datasets of archaeologi-

cal feature locations and morphology, therefore, permits research that

uses automated methods to go beyond detection tasks to address

longstanding questions about the archaeological record, itself (sensu

Davis, 2019). The use of AFE, and lidar more generally, is not a

replacement for field-based studies (Sugiyama et al., 2021), but it is an

important tool to use, especially in topographic context that make

field studies difficult and costly.

The significance of this model lies in the ubiquitous nature of the

feature it extracts. Terracing is a dominant feature type in archaeol-

ogy, both in and outside Oceania. Given the shared morphological

characteristics of most terraces, we are confident that this model will

be applicable to other places within and outside Oceania. Further, we

demonstrate, building on prior research (e.g., Bonhage et al., 2021;

Carter et al., 2021; Dolejš et al., 2020), the efficacy of Mask R-CNN

models for archaeological prospection of lidar datasets. Given the

cross-cultural importance of terracing, and the fact that these features

are some of the most visible using lidar datasets (McCoy et al., 2011;

Sánchez Díaz & García Sanjuán, 2022), we expect Mask R-CNN

models trained with our data and supplemented with a small set of

local features to provide an opportunity to document the nature and

scale of human landscape modification efficiently and accurately

across the globe. By applying deep learning to one of the most ubiqui-

tous features in the region, which relate to diverse behaviours

(i.e., defence, agriculture and habitation), such methods open

additional avenues for comparative studies of subsistence practices,

agricultural economies, sociopolitical organization and population

dynamics across the Pacific and elsewhere around the world.

CONFLICT OF INTEREST STATEMENT

The authors have no conflicts of interest to disclose.

DATA AVAILABILITY STATEMENT

Training data and Mask R-CNN model are available at 10.5281/

zenodo.7312103. The .shp file of the cleaned identified terraces is

also available as are the raw identified datasets for each window size.

ORCID

Seth Quintus https://orcid.org/0000-0003-4388-3862

Dylan S. Davis https://orcid.org/0000-0002-5783-3578

Ethan E. Cochrane https://orcid.org/0000-0001-9027-0634

REFERENCES

Acabado, S. B., Koller, J. M., Liu, C., Lauer, A., Farahani, A., Barretto-

Tesoro, G., Reyes, M. C., Martin, J. A., & Peterson, J. A. (2019). The

short history of the Ifugao rice terraces: A local response to the Span-

ish conquest. Journal of Field Archaeology, 44, 195–214. https://doi.
org/10.1080/00934690.2019.1574159

Addison, D. J. (2006). Feast or famine? Predictability, drought, density, and

irrigation: the archaeology of agriculture in Marquesas Islands Valleys.

Unpublished PhD Dissertation, Department of Anthropology,

University of Hawai'i.

Agapiou, A., Vionis, A., & Papantoniou, G. (2021). Detection of archaeolog-

ical surface ceramics using deep learning image-based methods and

very high-resolution UAV imageries. Land, 10, 1365. https://doi.org/

10.3390/land10121365

Allen, M. S. (2004). Bet-hedging strategies, agricultural change, and unpre-

dictable environments: Historical development of dryland agriculture

in Kona, Hawaii. Journal of Anthropological Archaeology, 23, 196–224.
https://doi.org/10.1016/j.jaa.2004.02.001

Arnoldussen, S., Verschoof-van der Vaart, W. B., Kaptijn, E., &

Bourgeois, Q. P. J. (2022). Field systems and later prehistoric land use:

QUINTUS ET AL. 13

 10990763, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/arp.1909 by C

olum
bia U

niversity L
ibraries, W

iley O
nline L

ibrary on [14/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.5281/zenodo.7312103
https://doi.org/10.5281/zenodo.7312103
https://orcid.org/0000-0003-4388-3862
https://orcid.org/0000-0003-4388-3862
https://orcid.org/0000-0002-5783-3578
https://orcid.org/0000-0002-5783-3578
https://orcid.org/0000-0001-9027-0634
https://orcid.org/0000-0001-9027-0634
https://doi.org/10.1080/00934690.2019.1574159
https://doi.org/10.1080/00934690.2019.1574159
https://doi.org/10.3390/land10121365
https://doi.org/10.3390/land10121365
https://doi.org/10.1016/j.jaa.2004.02.001


New insights into land use detectability and palaeodemography in the

Netherlands through LiDAR, automatic detection and traditional field

data. Archaeological Prospection. https://doi.org/10.1002/arp.1891

Bayliss-Smith, T. P., & Hviding, E. (2015). Landesque capital as an alterna-

tive to food storage in Melanesia: Irrigated taro terraces in New

Georgia, Solomon Islands. Environmental Archaeology, 20, 425–436.
https://doi.org/10.1179/1749631414Y.0000000049

Bedford, S., Siméoni, P., & Lebot, V. (2018). The anthropogenic transfor-

mation of an island landscape: Evidence for agricultural development

revealed by LiDAR on the island of Efate, Central Vanuatu,

South-West Pacific. Archaeology in Oceania, 53, 1–14. https://doi.org/
10.1002/arco.5137

Bennett, R., Cowley, D., & De Laet, V. (2014). The data explosion:

Tackling the taboo of automatic feature recognition in airborne survey

data. Antiquity, 88(341), 896–905. https://doi.org/10.1017/

S0003598X00050766

Berganzo-Besga, I., Orengo, H. A., Lumbreras, F., Carrero-Pazos, M.,

Fonte, J., & Vilas-Estévez, B. (2021). Hybrid MSRM-based deep learn-

ing and multitemporal sentinel 2-based machine learning algorithm

detects near 10k archaeological tumuli in North-Western Iberia.

Remote Sensing, 13, 20. https://doi.org/10.3390/rs13204181

Best, S. (1993). At the halls of the mountain kings. Fijian and Samoan forti-

fications: Comparison and analysis. Journal of the Polynesian Society,

102, 385–447.
Bevan, A., Conolly, J., Colledge, S., Frederick, C., Palmer, C., Siddall, R., &

Stellatou, A. (2013). The long-term ecology of agricultural terraces and

enclosed fields from Antikythera, Greece. Human Ecology, 41, 255–
272. https://doi.org/10.1007/s10745-012-9552-x

Bickler, S. H. (2021). Machine learning arrives in archaeology. Advances in

Archaeological Practice, 9, 186–191. https://doi.org/10.1017/aap.

2021.6

Bickler, S. H., & Jones, B. (2021). Scaling up deep learning to identify earth-

work sites in Te Tai Tokerau, Northland, New Zealand. Archaeology in

New Zealand, 64, 16–30.
Bonhage, A., Eltaher, M., Raab, T., Breuß, M., Raab, A., & Schneider, A.

(2021). A modified Mask region-based convolutional neural network

approach for the automated detection of archaeological sites on

high-resolution light detection and ranging-derived digital elevation

models in the North German Lowland. Archaeological Prospection, 28,

177–186. https://doi.org/10.1002/arp.1806
Brown, A., Walsh, K., Fallu, D., Cucchiaro, A., & Tarolli, P. (2020). European

agricultural terraces and lunchets: From archaeological theory to heri-

tage management. World Archaeology, 52, 566–588. https://doi.org/
10.1080/00438243.2021.1891963

Câmara, A., de Almeida, A., Caçador, D., & Oliveira, J. (2023). Automated

methods for image detection of cultural heritage: Overviews and per-

spectives. Archaeological Prospection, 30, 153–169. https://doi.org/10.
1002/arp.1883

Capolupo, A., Kooistra, L., & Boccia, L. (2018). A novel approach for

detecting agricultural terraced landscapes from historical and contem-

poraneous photogrammetric aerial photos. International Journal of

Applied Earth Observation and Geoinformation, 73, 800–810. https://
doi.org/10.1016/j.jag.2018.08.008

Carson, M. T. (2006). Samoan cultivation practices in archaeological

perspective. People and Culture in Oceania, 22, 1–29.
Carter, A., Heng, P., Stark, M., Chhay, R., & Evans, D. (2018). Urbanism and

residential patterning in Angkor. Journal of Field Archaeology, 43,

492–506. https://doi.org/10.1080/00934690.2018.1503034
Carter, B. P., Blackadar, J. H., & Conner, W. L. A. (2021). When computers

dream of charcoal: Using deep learning, open tools, and open data to

identify relict charcoal hearths in and around state game lands in

Pennsylvania. Advances in Archaeological Practice, 9, 257–271. https://
doi.org/10.1017/aap.2021.17

Caspari, G., & Crespo, P. (2019). Convolutional neural networks for archae-

ological site detection—Finding “princely” tombs. Journal of

Archaeological Science, 110, 104998. https://doi.org/10.1016/j.jas.

2019.104998

Cerrillo-Cuenca, E., & Bueno-Ramírez, P. (2019). Counting with the

invisible record? The role of LiDAR in the interpretation of megalithic

landscapes in south-western Iberia (Extremadura, Alentejo and Beira

Baixa). Archaeological Prospection, 26, 251–264. https://doi.org/10.

1002/arp.1738

Chase, A. S. Z., & Weishampel, J. (2016). Using lidar and GIS to investigate

water and soil management in the agricultural terracing at Caracol,

Belize. Advances in Archaeological Practice, 4, 357–370. https://doi.
org/10.7183/2326-3768.4.3.357

Clark, J. T., & Herdrich, D. J. (1993). Prehistoric settlement system in

eastern Tutuila, American Samoa. Journal of the Polynesian Society,

102, 147–185.
Cochrane, E. E., & Mills, J. (2018). LiDAR imagery confirms extensive

interior land-use on Tutuila, American Samoa. Journal of Pacific

Archaeology, 9, 70–78.
Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L.,

Wehberg, J., Wichmann, V., & Böhner, J. (2015). System for

Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geoscientific Model

Development, 8, 1991–2007. https://doi.org/10.5194/gmd-8-1991-

2015

Davis, D. S. (2019). Object-based image analysis: A review of develop-

ments and future directions of automated feature detection in land-

scape archaeology. Archaeological Prospection, 26, 155–163. https://
doi.org/10.1002/arp.1730

Davis, D. S., Caspari, G., Lipo, C. P., & Sanger, M. C. (2021). Deep learning

reveals extent of Archaic Native American shell-ring building practices.

Journal of Archaeological Science, 132, 105433. https://doi.org/10.

1016/j.jas.2021.105433

Davis, D. S., Lipo, C. P., & Sanger, M. C. (2019). A comparison of auto-

mated object extraction methods for mound and shell-ring identifica-

tion in coastal South Carolina. Journal of Archaeological Science:

Reports, 23, 166–177.
Davis, D. S., & Lundin, J. (2021). Locating charcoal production sites in

Sweden using hydrological algorithms and deep learning. Remote

Sensing, 13, 3680. https://doi.org/10.3390/rs13183680

Day, S. S. (2018). Using unsupervised classification techniques and hypso-

metric index to identify anthropogenic landscapes through American

Samoa. Journal of the Polynesian Society, 127, 55–72. https://doi.org/
10.15286/jps.127.1.55-72

De Smedt, P., Garwood, P., Chapman, H., Deforce, K., De Grave, J.,

Hanssens, D., & Vandenberghe, D. (2022). Novel insights into prehis-

toric land use at Stonehenge by combining electromagnetic and inva-

sive methods with a semi-automated interpretation scheme. Journal of

Archaeological Science, 143, 105557. https://doi.org/10.1016/j.jas.

2022.105557
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