
REV I EW

Advancing transdisciplinary research on Madagascar’s
grassy biomes to support resilience in
ecosystems and livelihoods

Leanne N. Phelps1,2,3,4 | Estelle Razanatsoa5,6 | Dylan S. Davis3,4,7 |

Jan Hackel8,9 | Tanambelo Rasolondrainy10 | George P. Tiley11 |

David Burney12 | Ronadh Cox13 | Laurie Godfrey14 |

Gareth P. Hempson15,16 | Sean Hixon17,18 | Tobias Andermann19 |

Sylvie Andriambololonera20 | Lala Roger Andriamiarisoa20,21 |

Alexandre Antonelli22,23,24 | Guillaume Besnard25 | Chris Birkinshaw20 |

William Bond22 | Lounès Chikhi25,26 | Víctor Fern�andez-García27,28 |

Lindsey Gillson5 | Simon Haberle29,30 | James Hansford31,32,33 |

Grant S. Joseph34 | Christian A. Kull28 | Chiamaka L. Mangut3,4 |

Rob Marchant35 | Vincent Montade36 | Karen V. Pham37 |

David Rabehevitra11 | Ute Radespiel38 | Jeannie Raharimampionona20 |

Mamy Tiana Rajaonah11 | Nantenaina Rakotomalala11 |

Tanjona Ramiadantsoa39,40 | Botovao Auguste Ramiandrisoa6,40 |

Hery Lisy Tiana Ranarijaona6,41 | Tianjanahary Randriamboavonjy11 |

Fenitra Randrianarimanana11,42 | Fetra Randriatsara5 |

Joelisoa Ratsirarson43,44 | Andriantsilavo Hery Isandratana Razafimanantsoa5,45 |

Jordi Salmona25 | Karen Samonds32 | Nick Scroxton46 |

Colleen Seymour34,47 | Travis S. Steffens48,49 | Helena Teixeira38,50 |

Ny Riavo G. Voarintsoa51 | Patrick O. Waeber52,53 | Lucienne Wilmé20,54 |

Anne D. Yoder55 | Elliot Convery Fisher1,2 | Cédrique Solofondranohatra40 |

Tobias van Elst38 | Brooke Crowley56,57 | Kristina Douglass3,4 |

Maria S. Vorontsova11 | Caroline E. R. Lehmann1,2

Brooke Crowley, Kristina Douglass, Maria S. Vorontsova, and Caroline
E. R. Lehmann contributed equally to the work reported here.

For affiliations refer to page 19

Received: 17 September 2024 Revised: 23 January 2025 Accepted: 6 February 2025

DOI: 10.1002/ecm.70011

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided

the original work is properly cited.

© 2025 The Author(s). Ecological Monographs published by Wiley Periodicals LLC on behalf of The Ecological Society of America.

Ecological Monographs. 2025;95:e70011. https://onlinelibrary.wiley.com/r/ecm 1 of 33
https://doi.org/10.1002/ecm.70011

https://orcid.org/0000-0002-7385-3907
https://orcid.org/0000-0002-7219-1411
https://orcid.org/0000-0002-5783-3578
https://orcid.org/0000-0002-9657-5372
https://orcid.org/0000-0002-3962-1504
https://orcid.org/0000-0003-0053-0207
https://orcid.org/0000-0002-1029-8926
https://orcid.org/0000-0002-1743-2702
https://orcid.org/0000-0001-9997-0207
https://orcid.org/0000-0001-8055-4895
https://orcid.org/0000-0001-6147-7118
https://orcid.org/0000-0002-0932-1623
https://orcid.org/0000-0003-1842-9297
https://orcid.org/0000-0003-2275-6012
https://orcid.org/0000-0002-3441-2084
https://orcid.org/0000-0002-1140-0718
https://orcid.org/0000-0003-3217-3814
https://orcid.org/0000-0001-5802-6535
https://orcid.org/0000-0002-5702-8915
https://orcid.org/0000-0002-8731-9828
https://orcid.org/0000-0002-7516-7898
https://orcid.org/0000-0002-8518-2610
https://orcid.org/0000-0003-4689-0267
https://orcid.org/0000-0002-9933-6991
https://orcid.org/0000-0003-2315-9199
https://orcid.org/0000-0002-6729-2576
https://orcid.org/0000-0001-9032-4575
https://orcid.org/0000-0002-3229-0124
https://orcid.org/0000-0002-8344-1957
https://orcid.org/0000-0002-8462-6806
https://orcid.org/0000-0003-0931-3428
https://orcid.org/0000-0003-0899-1120
https://orcid.org/0000-0002-6825-124X
http://creativecommons.org/licenses/by/4.0/
https://onlinelibrary.wiley.com/r/ecm
https://doi.org/10.1002/ecm.70011
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fecm.70011&domain=pdf&date_stamp=2025-07-15


Correspondence
Leanne N. Phelps
Email: leannenphelps@gmail.com

Funding information
Schweizerischer Nationalfonds zur
Förderung der Wissenschaftlichen
Forschung, Grant/Award Numbers:
P2LAP2_187745, P2LAP2_187745/2,
P500PN_206663, P500PN_206663/2;
European Union’s Horizon 2020,
Grant/Award Number: 101026923;
Swedish Research Council, Grant/Award
Number: 2019-05191; Swedish
Foundation for Strategic Environmental
Research MISTRA (Project BioPath);
Royal Botanic Gardens, Kew; Swiss
Network for International Studies;
Laboratoire d’Excellence (LABEX),
Grant/Award Numbers:
ANR-10-LABX-2501, ANR-10-LABX-0041

Handling Editor: Andrew B. Davies

Abstract

Grassy biomes (savanna and grasslands) are globally extensive and host a

unique biodiversity that is of central importance to human livelihoods.

We focus here on the island of Madagascar—a microcosm of the global tro-

pics, covered in 80% grassy biomes—to illustrate how transdisciplinary

approaches to research can clarify ecosystem dynamics, from evolutionary

history to human land use. Research on Madagascar’s human-environment

interactions has sparked debates about the role of past and current land

use in shaping grassy biomes (e.g., pastoralism, cultivation, fire use). These

debates echo those in other regions globally, and highlight obstacles to

understanding and supporting both ecosystem and livelihood resilience.

Like many tropical biodiversity hotspots, Madagascar faces converging

challenges that can be aided by transdisciplinary research, including food

and health insecurity, economic inequities, biodiversity loss, climate

change, land conversion, and limited resource access. We present a frame-

work to guide transdisciplinary research centered on improved understand-

ing and management of grassy biomes on Madagascar by: (1) establishing a

globally common terminology; (2) summarizing data contributions and scien-

tific knowledge gaps relating to Madagascar’s grassy biomes; (3) identifying

priority research questions for Madagascar with applicability in other regions;

and (4) highlighting transdisciplinary, inclusive approaches to research that

can co-benefit people and the ecosystems with which they interact.

KEYWORD S
anthropogenic, disturbance dynamics, ecosystems, grassland, grassy biomes, grassy
ecosystems, land conversion, land use and land cover change (LULCC), land use,
landscape ecology, livelihoods, open ecosystems, savanna

INTRODUCTION

Covering ~40% of the Earth’s vegetated land surface
(Buisson et al., 2022; Lehmann et al., 2019; Parr
et al., 2014), grassy biomes are open landscapes maintained
through a combination of climatic forces and disturbance
dynamics. Fire, grazing, and human land use regimes mod-
ify and maintain grassy ecosystems, which in turn support
millions of livelihoods worldwide (Box 1; Bardgett
et al., 2021; Lehmann & Parr, 2016; Osborne et al., 2018;
White et al., 2000, 1983; Andela et al., 2017). Grassy biomes
are fundamental to human well-being globally, and people
play diverse roles in shaping these ecosystems, such as
managing herbivory through pastoralism, converting land
for cultivation, and prescribed burning for a variety of
socio-ecological applications (e.g., Alvarado et al., 2018;
Berlinck et al., 2021; Buisson, 2019; Di Lernia &
Cremaschi, 1996; Marshall et al., 2018; Mistry et al., 2005;
Pastro et al., 2011).

Tropical grassy biomes include savannas and grass-
lands, which became established during the Late Miocene

and Pliocene (8–3 million years ago) through a complex
interplay of climate, fire, and herbivory (Bond et al., 2008;
Cerling et al., 1997; Edwards et al., 2010; Willis
et al., 2008). Despite their relatively young evolutionary
age, these ancient grassy biomes can support high levels
of biodiversity and endemism (Figure 1; Antonelli
et al., 2022; Bond, 2016; Lehmann et al., 2022; Murphy
et al., 2016; Parr et al., 2014; Vorontsova et al., 2016),
and contribute to shaping biogeographical and biodiver-
sity patterns (e.g., by forming corridors or barriers that
can favor differentiation, diversity and micro-endemism
between forested areas: Quémére et al., 2012; Sgarlata
et al., 2019; Wilmé et al., 2006). Grassy biomes also
make major contributions to global biogeochemical
cycling (e.g., by holding large amounts of soil and bio-
mass carbon; Abreu et al., 2017; Grace et al., 2006; Jones
et al., 2019; Lange et al., 2015; Zhou et al., 2022),
and are foundational environments in which much of
human evolution and changes in land use (e.g., the devel-
opment of food production: pastoralism, cultivation) have
taken place (Bengtsson et al., 2019; Cerling et al., 2011;
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BOX 1

Recommended grassy biome terminology for transdisciplinary communication, building on previously
established definitions (e.g., Aubréville, 1957; Aubréville et al., 1958; White, 1983; Moat & Smith 2007), and
incorporating consideration of vegetation function (i.e., plant traits reflecting ecophysiological functioning).
Terms include recommended ecosystem types (1–3) and disturbance dynamics (8–10). Due to ambiguity
between studies, we do not recommend use of “generalized terms” (5–7) unless accompanied by precise open
and closed ecosystem terminology; for mixed vegetation types, where applicable, we recommend the term “veg-
etation mosaic” (4) with ecosystem types specified. Here, we define core terms for grassy biome research, but
additional terms (e.g., wetlands) are also relevant as they can support graminoids and herbivore habitats.

1. Open ecosystem: (Malagasy*: [vernacular] hiaka, monto; French: milieu ouvert) Umbrella term for all
ecosystems where plants recruit in sunlit environments due to abiotic factors (e.g., climate, soil chemistry,
hydrology) that support discontinuous or absent woody cover (trees, shrubs), or edaphic and/or distur-
bance processes that prevent formation of a closed vegetation canopy. Examples include shrublands,
grasslands, and savannas, often maintained by fire and herbivores.
1.1 Grassy biomes: (Malagasy*: [vernacular] fatra, fatrambe, banja; French: formations graminéennes;
zones herbeuses) Umbrella term for ecosystems with a continuous grass-dominated ground layer, with or
without woody plants (including grasslands and savannas). Grassy biomes often include non-grass species
in the ground layer, for example, sedges and a wide diversity of dicots.

1.1.1 Savannas (or Savannahs): (Malagasy*: [vernacular] banja; French: savane) Open ecosystems
with a ground layer dominated by herbaceous plants and variable densities of woody plants (trees and
shrubs), which are typically maintained by fire and/or herbivory. Herbivores tend to play a greater role in
controlling woody cover below climate-potential in drier savannas, while fire typically prevents transi-
tions to closed-canopy ecosystems in wetter regions.

1.1.2 Grasslands: (Malagasy*: [vernacular] bozaka, ahi-dambo**; French: prairies) Open ecosystems
dominated by a continuous herbaceous layer with little to no tree cover (e.g., prairie, steppe); however,
the transition zone between savanna and grassland can be broad. In grasslands, abiotic factors such as
cold and frost or seasonally anoxic water-logged soils typically play a major role in limiting tree establish-
ment, with fire and herbivory playing more secondary roles in restricting tree cover. Grasslands fre-
quently have a species-rich and functionally diverse herbaceous plant community, which is often slow to
recover after anthropogenic disturbance (e.g., plowing).

2. Closed ecosystem (or forest): (Malagasy*: [vernacular] ala, kirihitr’ala; French: milieu fermé, forêt)
Umbrella term for ecosystems with a continuous vegetation canopy dominated by woody species (i.e., forest,
thicket, shrubland), which prevents light from penetrating the understory, and a ground layer dominated by
fire-sensitive herbaceous cover (which may include C3 grasses that tolerate low or mixed light) and leaf litter,
where seedlings can recruit in the shade. Forest canopies may be seasonally open (deciduous).

3. Heathlands (or ericoid thicket): (Malagasy*: [vernacular] kirihitra, ala-kirihitra, alamaiky, ringy, anjavidy;
Français: fourré éricoïde) A shrubland, shrub ecosystem, or closed-canopy dwarf vegetation dominated by
ericoids (Ericaceae species) and similar shrubs. Heathlands can occur in various densities and heights, may
include occasional trees, and may transition into other ecosystems (e.g., forest, savanna). They are most
abundant at higher elevations and latitudes, but can also occur at lower elevations. Heathlands can include
a grassy component, but are often too cool, moist, and dense to support C4 grasses.

4. Vegetation mosaics: (Malagasy*: mifangaro zavamaniry; French: mosaïque de végétation) Generalized
term for a mix of two or more functionally distinct ecosystems in a landscape, for example, open and closed
ecosystems, or microhabitats characterized by different processes and functions, for example, a mix of for-
est patches, fire- or grazing-driven grassland, heathland, and patchy transitions along forest or lake mar-
gins. Mosaics are often associated with topographic heterogeneity (e.g., variability in local hydrology,
geomorphology, slope, soil, microclimate, fire susceptibility, herbivory), but may share some environmen-
tal features between vegetation types (e.g., climate, geology, species overlap). The stability and resilience of
mosaics vary, especially depending upon the scale of observation.

5. Woodland: (Malagasy*: [vernacular] ala-tapia, ala malalaka; ala ringitra; Français: formation arborée)
Generalized term used to refer to ecosystems that contain woody vegetation and are maintained by a
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variety of biotic and abiotic factors (e.g., precipitation, seasonality, geology, soils, hydrology, fire, grazing).
As functional characteristics central to ecosystem differentiation are often overlooked with this term (Griffith
et al., 2017; Ratnam et al., 2011), we recommend avoiding its use without incorporating precise terminology
that reflects vegetation function (i.e., vegetation described in terms of “forest” or “savanna” with discussion
of relevant disturbance processes). Past applications of this term have varied widely, which can lead to vege-
tation misclassification, including both open woodlands (savanna) with a fire or herbivory-adapted under-
story dominated by grasses, and closed woodlands (forest) with a shade-tolerant understory.

6. Natural vegetation/ecosystems: (Malagasy*: zava-maniry voajanahary, tontolo voajanahary; Français:
végétation/ écosystèmes naturel(le)s) Generalized term for environments that are relatively unmodified by
human activity. However, such environments are either extremely rare or nonexistent today, and nuanced
land use impacts are often difficult to observe and measure in the past and present (e.g., Phelps &
Kaplan, 2017). We instead recommend a pragmatic approach focused on explicit consideration of both land
cover and land use: that is, specifying vegetation type (e.g., “forest,” “savanna,” “grassland”) and characteriz-
ing the associated processes, heterogeneity, and extent to which humans and other organisms modify or drive
biodiversity and ecosystem function (e.g., as in Phelps & Kaplan, 2017). Highly modified environments
include, for example., urban areas, monoculture plantations, and anthropogenically denuded landscapes.

7. Secondary vegetation: (Malagasy*: [vernacular] savoka; Francais: végétation secondaire) Generalized term
for vegetation that replaces a previous form or composition. However, this term is frequently used to
describe depauperate or species-poor vegetation that replaces “natural” or a previous form of vegetation
through anthropogenic disturbance (e.g., as a result of land clearance for agriculture, charcoal production,
or tree plantations). While species-poor vegetation can result from anthropogenic modifications, we do not
recommend using “secondary vegetation” to describe species-poor vegetation, as all vegetation has been modi-
fied to varying degrees. Instead, we recommend that research focuses on explicitly characterizing land cover
(e.g., “forest,” “savanna,” “grassland”) and associated disturbance processes, including the qualities and degree
of modification, and how these affect vegetation characteristics (e.g., composition, structure, extent). For exam-
ple, where forest, savanna, and grassland have been degraded or converted, these areas may be referred to as
“degraded,” “converted,” or “species-poor” forest, savanna, or grassland—and described in terms of land use
characteristics where relevant (e.g., “rangeland,” “pasture,” “cropland”: Phelps & Kaplan, 2017).

8. Rangeland (or pasture): (Malagasy*: [vernacular] kijana; French: pâturage) Definitions of rangeland and
pasture vary widely (Phelps & Kaplan, 2017), but tend to refer to vegetated land used for partial or full graz-
ing/browsing of livestock.

9. Grazers, browsers, and mixed feeders: (Malagasy*: [vernacular] biby mpiraoka ahitra, biby
mpihinan-javamaniry; Français: paisseurs, brouteurs et autres herbivores) Herbivore diets exist on a contin-
uum from grazing to browsing, with diet preferences determined by physiology and morphology
(e.g., dentition and digestion), environmental conditions, and competition. Herbivores that rely primarily
on grazing (e.g., sheep, cattle) tend to consume ground cover (graminoid grasses and sedges, herbs), while
herbivores that rely primarily on browsing (e.g., folivorous lemurs) tend to consume woody shrubs and
trees (e.g., leaves, bark). Mixed feeders (e.g., goats, giant tortoises) consume a combination of these differ-
ent types of plant foods, and can have highly variable diets.

10. Fire regimes: (Malagasy*: toetry ny afo; Français: régimes de feu) Patterns in fire characteristics (e.g., seasonality,
frequency, size, intensity) observable at the landscape scale. For example, landscape-scale fires (>21 ha: Giglio
et al., 2018; Phelps et al., 2022) on Madagascar range from large, frequent, and regular at high elevations in the
Central Highlands, to relatively small, infrequent, and variable in eastern humid bioclimates (Phelps et al., 2022).
Small-scale fires (<21 ha) also have cumulatively important impacts, which vary within fire regimes
(e.g., Fern�andez-García & Kull, 2023; Roteta et al., 2019; Zhao, Li, et al., 2021; Fernàndez-García, Phelps et al.,
2024). Fires can be ignited by people or lightning, with burned area determined by factors such as precipitation,
weather, and other forms of disturbance.
*Malagasy terms are drawn from several dialects, reflecting linguistic diversity across the island. We include

both scientific terms and a range of vernacular (italics) terms, with further work required to document exten-
sive and variable Malagasy terminologies.

**Note that this term also describes grasses with spiky leaves, such as Heteropogon contortus.
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Domínguez-Rodrigo, 2014; Potts et al., 2018; Strömberg &
Staver, 2022). Yet, grassy biomes are often dismissed as
degraded or wasteland, without empirical investigation of
biodiversity or land use benefits (Bardgett et al., 2021;
Bond, 2016; Parr et al., 2014; Stevens et al., 2022;
Strömberg & Staver, 2022).

Livelihood and ecosystem health depend
on improved understanding of grassy
biome dynamics, as illustrated by
Madagascar

Like many biodiversity hotspots, the island of Madagascar
is confronted with globally relevant challenges of manag-
ing biodiversity conservation and ecosystem function
while navigating food and health insecurity, economic
inequities, including extreme poverty, rapid population
growth, unstable access to resources and international
investments, and climate change vulnerability (Barrett

et al., 2011; Carret, 2013; Eckstein et al., 2018; Glamann
et al., 2017; Harvey et al., 2014; Herrera et al., 2021;
Makoni, 2021; Ralimanana et al., 2022; Scherer
et al., 2020; UNICEF, 2021). As of 2021, Malagasy grassy
biomes were reported to provision nearly nine million
head of cattle (FAOSTAT, 2021), which offer essential
support for livelihoods, including household incomes,
insurance against crop failure, and are important ele-
ments of cultural identity (Steinfeld et al., 2006; World
Bank, 2003).

The Holocene expansion of grassy biomes on
Madagascar, and Africa more broadly, is often associated
with the spread of agricultural land use (i.e., pastoralism
and cultivation) and changes in fire and herbivory (e.g.,
Madagascar: Burney et al., 2003; Burns et al., 2016;
Crowley & Samonds, 2013; Godfrey et al., 2019;
Razanatsoa et al., 2022; Voarintsoa et al., 2017;
Razafimanantsoa et al., 2024; continental Africa:
Phelps, Broennimann, et al., 2020; Phelps, Chevalier,
et al., 2020). However, the causal interrelationships

F I GURE 1 Grass (Poaceae) diversity patterns on Madagascar. (A) Species richness based on species distribution modeling with

available occurrence records (see Antonelli et al., 2022 for details; 2.5-km2 resolution). (B) Numbers of specimen records in herbarium

collections and combined number of species, per 50 × 50 km grid cell (white denotes an absence of records). Figure adapted from Antonelli

et al. (2022).
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between the spread of agriculture and grassy biome
expansion are complex and still poorly understood across
sub-Saharan Africa, with transdisciplinary research required
to disentangle drivers of change, and to advance the under-
standing of human resilience and adaptation in response to
environmental change (e.g., the termination of the African
Humid Period, from ca. 5500 years BP: Phelps,
Broennimann, et al., 2020; Phelps, Chevalier, et al., 2020;
Phelps, Kull, et al., in press; Phelps, et al., 2025b). Recent
debates about human-environment interactions on
Madagascar highlight opportunities and challenges to tropi-
cal grassy biome research and management (e.g., debates
about the extent of these biomes prior to human arrivals
and the role of people and herbivory in shaping the island’s
grassy biomes: Alva et al., 2022; Dewar et al., 2013;
Douglass, Hixon, et al., 2019; Douglass, Morales, et al., 2019;
Douglass, Walz, et al., 2019; Godfrey & Crowley, 2016;
Gommery et al., 2011; Hansford et al., 2018; Hixon
et al., 2018; Joseph & Seymour, 2020; Lehmann et al., 2022;
Vorontsova et al., 2016).

On Madagascar and across the globe, pastoralism can
occur in virtually any biome (Phelps & Kaplan, 2017), and
is associated with pastoral fires, which are often assumed
or hypothesized as a primary driver of grassy biome expan-
sion (e.g., Kaufmann & Tsirahamba, 2006; Phelps
et al., 2022; Phelps, Broennimann, et al., 2020;
Wright, 2017). However, the long-term drivers of vegeta-
tion change in grassy ecosystems are complex and debated,
especially regarding the role of Holocene human subsis-
tence practices (e.g., pastoralism and cultivation, and asso-
ciated fire use: Brierley et al., 2018; Crowther et al., 2016;
Dewar & Wright, 1993; Godfrey et al., 2019; Hixon, Curtis,
Brenner, et al., 2021; Hixon, Douglass, Godfrey, et al., 2021;
Hixon, Douglass, et al., 2021; Manning & Timpson, 2014;
Phelps, Broennimann, et al., 2020; Wright, 2017).
Understanding the long-term drivers of vegetation change is
further complicated by recent large-scale land conversion
and degradation tied to colonialism, urbanization, popula-
tion growth, and global market demands (e.g., for
Madagascar: charcoal production and logging: Hoang &
Kanemoto, 2021; Zhu, 2018; Jarosz, 1993; Kanemoto, 2021;
Moser, 2008; Waeber et al., 2015; Vieilledent et al., 2018).
Inadequate management of fire risk (e.g., inappropriate fire
suppression leading to increased fuel load; lack of infrastruc-
ture to contain forest fires) and extreme weather conditions
can also cause fire to escape into and damage forest
stands, especially when combined with degradation
near forest edges (e.g., Cochrane & Bowman, 2021;
Kull & Lehmann, 2022; Veldman et al., 2019; Zhao, Yu,
et al., 2021).

Combined with the aforementioned factors, limited
or patchy palaeo-record coverage across Africa and ambi-
guities in vegetation definitions also make it difficult to
determine the extent of Holocene vegetation change and

the role of human activities (e.g., Fairhead & Leach, 1996;
Griffith et al., 2017; Harper et al., 2007; Lambin
et al., 2001; Parr et al., 2014; Phelps et al., 2024; Phelps,
Broennimann, et al., 2020; Phelps & Kaplan, 2017)—as
has been extensively debated for Madagascar—and com-
plicates restoration and conservation targets (Burney
et al., 1997, 2003; Bond et al., 2008; Crowley et al., 2021;
Godfrey & Crowley, 2016; Vorontsova et al., 2016; albeit
see Montade et al., 2024; Razafimanantsoa et al., 2024;
Quémére et al., 2012; Salmona et al., 2017; Teixeira,
Montade, et al., 2021; Teixeira, Salmona, et al., 2021;
Tiley et al., 2022). Furthermore, biogeophysical feed-
backs shape grassy biomes in a variety of ways, but their
effects are still poorly known (Armitage et al., 2015;
Claussen et al., 1999). Many of these are linked to
changes in climate, atmospheric CO2, hydrology, geomor-
phology, and competition (Armitage et al., 2015; Bond
et al., 2003; Bond & Midgley, 2012; Goel et al., 2020;
Ramiadantsoa & Solofondranohatra, 2021). Closing these
knowledge gaps requires an assessment of research prac-
tices on grassy biome dynamics.

We present a framework to advance transdisciplinary
research and management of grassy biomes on Madagascar
and their relationship to other biomes, including forests. By
focusing on Madagascar as a microcosm of the broader tro-
pics (e.g., Phelps et al., 2022; Phelps et al., in press), our
framework is applicable to other ecosystems across the
globe and will shed light on challenges and opportunities
faced in grassy biome studies more broadly. In the four sec-
tions below, we present our Madagascar-centered frame-
work, which (1) outlines a globally common terminology
for grassy biome research, (2) summarizes the contribu-
tions, limitations, and knowledge gaps of research on
Malagasy grassy biomes with relevance to other regions,
(3) identifies priority research questions for Madagascar
with applicability in other regions, and (4) highlights
transdisciplinary approaches that resolve key knowledge
gaps and co-benefit ecosystems and livelihoods. Our
framework aims to improve scientific understanding,
increase transdisciplinary collaboration, and promote
more equitable and sustainable management of grassy
biomes on Madagascar and globally.

OUT OF THE WOODS:
ESTABLISHING GLOBALLY
APPLICABLE, FUNCTIONAL
TERMINOLOGY FOR GRASSY
BIOME RESEARCH

Transdisciplinary engagement is critical for ecosystem
restoration and management (Bowman et al., 2020;
Knapp & Collins, 2019; Zhao, Yu, et al., 2021). However,
a lack of effective communication across studies,
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disciplines, and stakeholders can result in varied termi-
nology and misunderstandings, and detract from scien-
tific advances, inclusive decision-making, and
scientifically informed policy advice (Biggs et al., 2022;
Davis, 2020a; Descola, 2013; Gardin, 1980; Harris, 2018).
For example, assessments of vegetation distribution and
the degree to which it has changed over time vary glob-
ally due to different definitions and classifications, espe-
cially as these relate to disturbance processes such as
land use, fire, and herbivory (e.g., Fairhead &
Leach, 1996; Griffith et al., 2017; Harper et al., 2007;
Lambin et al., 2001; Phelps & Kaplan, 2017). In particu-
lar, definitions often focus on vegetation structure or
composition (e.g., canopy cover: Dixon et al., 2014) but
lack explicit consideration of vegetation function
(i.e., plant traits reflecting ecophysiological functioning),
which is needed to adequately define ecosystem function
and to avoid vegetation misclassification (Keith
et al., 2022). Furthermore, the implications of changing
vegetation composition and extent can be perceived and
valued differently among stakeholders operating at different
scales and with different definitions and environmental
baselines (e.g., local communities, government officials,
conservationists, scientific researchers: Alleway et al., 2023).
As a first step toward improving engagement in grassy
biome research and management, we summarize (Box 1)
and illustrate (Figures 2 and 3) key grassy biome terminol-
ogy that is globally applicable.

Major debates about the Holocene history of grassy
biomes on Madagascar have been fueled by ambiguity

around land cover and land use terms such as “woodland,”
“grassy biome,” “savanna,” “grassland,” “(pseudo-)steppe,”
“pasture,” “open ecosystems,” “natural,” “ancient,” and
“anthropogenic” (Box 1; e.g., Alvarado et al., 2015;
Joseph & Seymour, 2020, 2021; Lehmann et al., 2021;
Lowry II et al., 1997; Samonds et al., 2019;
Solofondranohatra et al., 2020; Vorontsova et al., 2016).
These debates reflect pervasive issues with vegetation
classifications worldwide, which can stem from difficul-
ties establishing discrete categories for a continuum of
vegetation that is: highly variable in space and time;
observed with diverse data types and resolutions; and
interacting with complex disturbance dynamics that are
not easily categorized (e.g., Chazdon et al., 2016; Griffith
et al., 2017; Lehmann et al., 2011; Phelps & Kaplan, 2017;
Ratnam et al., 2011; Staver et al., 2011). For example, dif-
ferent applications of the umbrella term “woodland” can
include or exclude grassy biomes (e.g., “Miombo wood-
lands” in south-central Africa can occur as savanna or dry
forest depending upon disturbance factors). Failure to dis-
tinguish between open ecosystems (e.g., heavily wooded
savannas, which typically have a shade-intolerant C4

grassy matrix) and closed ecosystems (i.e., forests, which
generally have a sparser understory and do not support C4

grasses) leads to variability and inaccuracies when calcu-
lating deforestation rates and assessing levels of degrada-
tion, with major implications for understanding the
drivers of vegetation change and developing effective land
management strategies (e.g., Bond et al., 2022; Griffith
et al., 2017). Furthermore, there is a need for common

F I GURE 2 Conceptual diagram of key grassy biome terminology (with example illustrations in Figure 3), to navigate pervasive issues

with vegetation classifications worldwide (e.g., Chazdon et al., 2016; Griffith et al., 2017; Keith et al., 2022; Lehmann et al., 2011; Phelps &

Kaplan, 2017; Ratnam et al., 2011; Staver et al., 2011). Numbers in parentheses correspond to definitions in Box 1. Dotted lines indicate

generalized terms, which may apply to closed or open ecosystems. (A) Key vegetation terms and their conceptual relationships. (B) Disturbance

dynamics such as human land use, herbivory, and fire, which are conceptually distinct from vegetation cover, and can occur on virtually any

vegetation type (Phelps et al., 2022; Phelps & Kaplan, 2017). Ambiguous use of generalized terms such as “woodland,” “natural vegetation,” or
“secondary vegetation” (red) can lead to misunderstandings between studies, and are therefore not recommended unless accompanied by

precise terminology. Additional ecosystems not mentioned here (e.g., wetlands) are also relevant; a variety of additional factors influence

vegetation change in grassy biomes, but are not the focus of this diagram (e.g., climate, soils, geology, atmospheric CO2).

ECOLOGICAL MONOGRAPHS 7 of 33
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recognition that vegetation characteristics extend
beyond “grasses” versus “trees” (e.g., Crowley
et al., 2021; Godfrey & Crowley, 2016;
Solofondranohatra et al., 2020; Vorontsova et al., 2016).
Grassy biomes can be composed of a wide variety of
graminoids (e.g., grasses, sedges), non-graminoid mono-
cots (e.g., lilies, orchids), herbaceous dicots, and woody
plants (e.g., geoxyles [underground trees], trees, shrubs).
These different types of vegetation support different
types of herbivory and have variable tolerance to other
kinds of disturbance (Box 1).

Interpretation of the terms “natural,” “ancient,”
and “anthropogenic” also vary widely—sometimes
treated as overlapping and other times treated as
mutually exclusive (Joseph & Seymour, 2021;
Marchant, 2021; Marchant et al., 2018; Salmona
et al., 2017; Silva et al., 2022; Solofondranohatra
et al., 2020). Like all modern biomes worldwide, tropical
grassy biomes are human-modified to some degree (Ellis
et al., 2021), with a variety of effects on ecosystem function
and human livelihoods. Landscapes with apparent anthro-
pogenic modifications are often implicitly assumed to have
less biodiversity and lower ecosystem value than land-
scapes that appear less modified, with local land use prac-
tices typically assumed to drive loss of biodiversity and
ecosystem function (Cronon, 1996; Ellis et al., 2021;
Fletcher et al., 2021; Kull et al., 2013; Taylor &
Lennon, 2011). However, empirical investigation of the
relationships between disturbance, biodiversity, and eco-
system function is required, as different forms and intensi-
ties of anthropogenic disturbance can modify biodiversity
and the range of available habitats to varying degrees
(e.g., Marshall et al., 2018; Mayor et al., 2012; Siebert &
Belsky, 2014; Wurz et al., 2022). This issue thus extends
into a political space: if common ground and effective
management decisions are to be reached, there is a need
for multi-scalar research that offers clear definitions and
clarity about the values and assumptions of multiple
stakeholders.

CONNECTING SILOS:
ESTABLISHING DATA TYPES,
CONTRIBUTIONS, AND SCOPE

For Madagascar and the broader tropics, long-standing
assumptions that grassy biomes are largely degraded
landscapes have prevented investigations of: their origins
and antiquity; temporal changes in their composition and
extent; their contributions to livelihoods and ecosystem
function; and the processes that shape them (e.g., land
use, fire, herbivory) (Bond & Parr, 2010). Such assump-
tions can persist due to:

1. Lack of communication and collaboration among
disciplines, which can lead to disconnects between
different data sources (e.g., between archaeological
and palaeo-records and modern environmental informa-
tion, which typically cover different spatial and temporal
scales: Dietl et al., 2015; Marchant et al., 2018);

2. Limited spatio-temporal coverage of modern grassy
biome surveys and palaeo-records (e.g., on
Madagascar: Broothaerts et al., 2023; Burney, 1987;
Burney et al., 2004; Gasse & Van Campo, 1998, 2001;
Hagl et al., 2021; Razafimanantsoa, 2022; Teixeira,
Montade, et al., 2021; continental Africa: Phelps,
Broennimann, et al., 2020; Phelps, Chevalier, et al., 2020);

3. Limited understanding of how long-term disturbance
processes have shaped the composition and extent of
grassy biomes (e.g., Lambin et al., 2001; Lehmann
et al., 2014; Phelps et al., 2022; Phelps & Kaplan, 2017)
and limited transdisciplinary communication about
ecosystem dynamics in modern grassy biomes
(e.g., Hempson et al., 2015, 2019; Lehmann et al., 2011;
Osborne et al., 2018; Phelps et al., 2022);

4. In some regions, limited understanding of grassy
biome contributions to human livelihoods and cul-
ture, and associated biodiversity: that is, poor ability
to distinguish among species-rich and species-poor
grassy ecosystems and their livelihood contributions;
a tendency to focus on agricultural productivity or
biodiversity rather than co-beneficial management of
ecosystem function and livelihoods (e.g., Lehmann &
Parr, 2016; Martin et al., 2022; Parr et al., 2014);

5. Environmental management practices centered on
institutions, training, and discourse that are histori-
cally dominated by forestry (e.g., Appendix S1:
Figure S1; Bond & Parr, 2010).

To foster transdisciplinary engagement in grassy
biome research and management, we focus on the tropi-
cal microcosm of Madagascar to summarize the ways in
which combining different types of datasets can advance
the understanding of spatio-temporal dynamics in grassy
biomes (Figure 4; Phelps et al., 2024). These datasets
include: archaeological, palaeoecological, botanical, faunal,
ethnographic, ethnohistorical, functional trait, genetic, and
geomorphological data, along with data obtained from
remote sensing and ecological models. It is our hope that
this will inspire grassy biome data compilations in other
tropical regions as well. Integrating different data types
gathered at various spatio-temporal scales, from local to
continental and daily to geological (Figure 4), can advance
research and management of tropical grassy biomes. Each
data type has inherent strengths and limitations
(Appendix S1: Table S1), and therefore multi-archive
approaches can reduce misinterpretations and advance the
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science behind the management of ecosystems and
livelihoods.

GREENER PASTURES:
TRANSDISCIPLINARY
APPROACHES TO GRASSY BIOME
RESEARCH, AS ILLUSTRATED BY
MADAGASCAR

Effective research and management of grassy biomes
requires transdisciplinary approaches that resolve knowl-
edge gaps and foster collaborative and adaptive manage-
ment of ecosystems and livelihoods. Below, we present
20 key research questions (Figure 5) and three transdisci-
plinary approaches for advancing our understanding of
grassy biomes on Madagascar (Figure 6), which can and
should be applied in other regions. Researchers and
managers can build on this framework to identify trans-
disciplinary needs and objectives together with local

stakeholders across the tropics (e.g., community members,
conservationists, protected area managers, local govern-
mental officials).

Approach 1: Improve integration of past,
present, and future datasets in ecosystems
research

Combining a variety of data types can offer context about
changes in the extent and composition of biomes through
time and the drivers of vegetation change (e.g., Figure 4;
Appendix S1: Table S1; Antonelli et al., 2022; Ralimanana
et al., 2022). This requires data integration across
spatial–temporal scales to clarify how past climates
and ecological and anthropogenic interactions shape
present and future grassy ecosystems (e.g., Alva et al., 2022;
Anderson, 2019; Ardalan et al., 2015; Githumbi et al., 2020;
Herrera et al., 2017; Wynne-Jones, 2012). For example,
there is some consensus regarding the prehuman presence

F I GURE 4 Summary of grassy biome data types (Appendix S1: Table S1), their temporal resolution, and relationship to features of

vegetation change in grassy biomes. Solid lines: data type provides direct information about a given grassy biome feature; dashed lines: data

type offers indirect information about a given grassy biome feature. Some data types can overlap (e.g., for pollen, phytoliths). Illustration

credit: Leanne Phelps.
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of grassy biomes on Madagascar (Antonelli et al., 2022;
Hackel et al., 2018; Lehmann et al., 2022; Vorontsova
et al., 2016), but the degree to which human land use has
modified their extent and composition is debated—as in
sub-Saharan Africa more broadly (e.g., Brierley et al., 2018;
Phelps, Broennimann, et al., 2020; Wright, 2017). This
knowledge gap is perpetuated by limited spatio-temporal
coverage and limited integration of datasets stemming from
different disciplines. Improved reconstructions and predic-
tions of grassy biome distribution, composition, and land
use are needed to help identify effective conservation priori-
ties and strategies to support ecosystem and livelihood resil-
ience under future ecosystem change. Achieving these will
require integration of long-term records with varying
spatio-temporal coverage and communication among
relevant disciplines (e.g., combining palaeoecological,
archaeological, ethnohistorical, evolutionary, and ecological

datasets; Dietl & Flessa, 2011; Willis & Birks, 2006; Phelps,
Jousse et al., 2019; Phelps, Chevalier et al, 2019; Phelps,
Gravey et al., 2022; Phelps, et al., 2025a).

Expand the spatial and temporal scales of
available data

High-resolution, multi-proxy records (e.g., pollen, char-
coal, isotopes, phytoliths, non-pollen palynomorphs)
with adequate chronological control and comprehensive
coverage of recent ecosystem structure, function, and
use are needed to disentangle complex spatio-temporal
dynamics in grassy biomes. However, the preservation of
multi-proxy palaeo-records tends to be favored by partic-
ular conditions (e.g., permanently flooded wetland sites,
buffered neutral sediments, or sheltered caves), and the

F I GURE 5 Top 20 transdisciplinary research questions focused on Madagascar, and of broader applicability in other regions. Questions

were collectively prioritized by the coauthors for future research on Madagascar’s grassy biomes (see Appendix S1: Table S2 for further

questions). Addressing these transdisciplinary research questions will require integration of past, present, and future information, and their

implementation can increase the effectiveness of management practices.
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inaccessibility of some environments limits the spatial
coverage of field research. Better incorporation of a vari-
ety of survey methods and fossil types that preserve a
larger variety of depositional environments can therefore
improve the coverage of grassy biome records. These could
include expanded sampling of phytoliths, non-pollen
palynomorphs, pollen, and macroflora in palaeosols and
palaeo-sediments (Strömberg, 2011), and the applica-
tion of expert knowledge around non-grass pollen indi-
cators (e.g., Phelps, Chevalier, et al., 2020). Aside from
select long-term sedimentary and speleothem records
(e.g., Broothaerts et al., 2023; Razafimanantsoa et al.,
2024; Burney, 1987; Burns et al., 2022; Gasse & Van
Campo, 2001; Scroxton et al., 2019; Teixeira, Montade,
et al., 2021), most palaeoenvironmental and
palaeoclimate records on Madagascar are also limited
to the Late Holocene (from ca. 4200 BP: Walker
et al., 2019). There is a need for better spatial coverage of
longer term records and higher resolution multi-proxy data
documenting climate and environmental variability at dif-
ferent scales and under a variety of conditions. One route to
better integrating past, present, and future information is to
focus research efforts on sites where transdisciplinary,
high-resolution datasets can be generated through collab-
orative, long-term research projects (e.g., Montade et al.,
2024; Teixeira, Montade, et al., 2021). By focusing efforts

toward improved communication among researchers
working at similar locations, we can develop
high-resolution analyses to maximize the understanding
and management of grassy biomes at different
spatio-temporal scales. In addition, it is critical that
well-constrained age models are developed that enable
inter-archive and inter-site comparisons (e.g. Godfrey
et al., 2019); such knowledge is critical for disentangling
the drivers of past environmental change and develop-
ing accurate estimates of ecosystem change.

Knowledge of the distribution of archaeological settle-
ments and land use change on Madagascar is also limited,
with nearly three quarters of the island under-investigated
(e.g., in terms of limited survey and excavation, available
data, and active field archaeologists; Davis, DiNapoli,
et al., 2020; Davis, Andriankaja, et al., 2020). More investi-
gation of historical settlement and land use is required to
estimate the effects of past human activities on vegetation
change, including food-producing, food-gathering, and
associated fire practices. Increasing the spatio-temporal
scale and integration of contemporary, historic, and
palaeo-records will improve the understanding of liveli-
hood resilience and lead to better predictions of future
ecosystem change across heterogeneous landscapes.
With improved, cumulative records of land use change,
we can also assess the degree to which anthropogenic

F I GURE 6 Transdisciplinary approaches to advancing research and management of grassy biomes on Madagascar and across

the globe.
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landscapes are stable ecological components or consti-
tute unstable and emerging ecosystems. For example, to
clarify past demographic changes and spatio-temporal
dynamics of human and agricultural arrivals on Madagascar,
we need to expand archaeological investigations and
combine them with additional data, such as demo-
graphic inferences based on genetic and genomic data
(e.g., Alva et al., 2022; Ardalan et al., 2015; Douglass,
Hixon, et al., 2019; Douglass, Morales, et al., 2019;
Douglass, Walz, et al., 2019; Hansford et al., 2018;
Herrera et al., 2017; Kusuma et al., 2015). Combining
archaeological and genetic information with Holocene
sedimentary records from lakes, marshes, and wetlands
is also crucial for disentangling the drivers of vegetation
change, as this provides a deep-time perspective capable of
identifying temporal lags in human-environment-climate
effects (e.g., Chikhi & Sgarlata, 2022; Li et al., 2020;
Quémére et al., 2012; Razanamahandry et al., 2022;
Razanatsoa et al., 2022; Salmona et al., 2017; Teixeira,
Montade, et al., 2021; Tiley et al., 2022; Virah-Sawmy
et al., 2010; Voarintsoa et al., 2017).

Revisit existing records and improve data
sharing practices

Reanalysis, reevaluation, and synthesis of existing and
new datasets can improve our ability to reconstruct
and predict ecosystem change (Davis, 2020a, 2020b;
Davis, Andriankaja, et al., 2020; Davis, DiNapoli,
et al., 2020; Douglass, Hixon, et al., 2019; Douglass,
Morales, et al., 2019; Douglass, Walz, et al., 2019; Gaillard
et al., 2008; Hixon et al., 2022; Phelps, Broennimann,
et al., 2020; Phelps, Chevalier, et al., 2020; Ullah, 2015).
For instance, synthesis and calibration of palaeose-
dimentary and archaeological chronologies within and
across study sites can clarify the timing and drivers of
landscape and vegetation change (e.g., Burney et al., 2003;
Godfrey et al., 2019; Phelps, Chevalier, et al., 2020;
Stephenson et al., 2021), and improve reconstructions of
human demographic change (Douglass, Hixon, et al., 2019;
Douglass, Morales, et al., 2019; Douglass, Walz, et al., 2019;
Manning & Timpson, 2014). When combined with insights
from current socio-ecological contexts and historical sources
(e.g., remote sensing, social surveys, genetic and functional
trait data, ethnohistorical records), these syntheses can offer
deeper understanding and novel interpretations of existing
records and past variability, as well as improve predictions
of current and future ecosystem change (e.g., Breeze
et al., 2015; Coelho et al., 2021; Davis & Douglass, 2020;
Quémére et al., 2012; Solofondranohatra et al., 2020).
Models based on diverse datasets (e.g., species distribution
models, land use change models, dynamic vegetation
models, population genetics models), and new statistical

(e.g., simulation-based inference, machine learning) and
collaborative approaches (e.g., participatory modeling,
open source code and data sharing) can also offer novel
insights into ecosystem change (Andermann et al., 2022;
Brierley et al., 2018; Chikhi & Sgarlata, 2022; Manning &
Timpson, 2014; Phelps, Broennimann, et al., 2020; Phelps,
Chevalier, et al., 2020; Salmona et al., 2017; Schüssler
et al., 2020; Teixeira, Montade, et al., 2021). These
approaches to integrating data from various sources and
spatio-temporal scales can allow us to: (1) understand the
potential lag effects between human activities and their
modifications to grassy biome composition and extent;
(2) evaluate the degree to which spatio-temporal biases in
existing datasets may influence interpretations of vegeta-
tion change; (3) extrapolate multi-scalar patterns from
local-scale information (e.g., ecosystem expansions and
contractions through deep time); and (4) simulate poten-
tial future grassy biome conditions.

Open and efficient data sharing practices among
research disciplines and teams is key to the integration of
past, present, and future information and can permit
environmental characterization and comparison among
regions, time periods, and disciplines. Oppositely, poor
data sharing practices can limit reconstructions and pre-
dictions of ecosystem change, in both scale and accuracy.
A number of global repositories now exist, through which
individual researchers can openly access and share their
datasets and support regional compilations of published
data (e.g., Neotoma, APD, NOAA Palaeoclimatology
Database, PANGAEA, SISAL, Dryad, IsoMad, ENA:
Hixon et al., 2024; Hooghiemstra et al., 2006; Phelps,
Broennimann, et al., 2020; Phelps, Chevalier, et al., 2020;
Vincens et al., 2007). However, global inequities in access to
scientific publishing and infrastructure can lead to regional
disparities in the production and access to scientific knowl-
edge (e.g., Vorontsova et al., 2020) and require targeted
efforts to improve access and regional representation
(e.g., Open Research Africa; African BioGenome Project).

Expand biodiversity surveys

Relationships between grasses and extinct megafauna on
Madagascar (e.g., elephant birds, tortoises, and pygmy
hippopotamuses) have received extensive research atten-
tion and debate in recent years (e.g., Bond et al., 2008;
Crowley et al., 2021; Crowley, Godfrey, et al., 2023;
Hixon et al., 2024; Godfrey & Crowley, 2016; Hagl
et al., 2021; Hansford & Turvey, 2022; Joseph &
Seymour, 2021; Nanjarisoa et al., 2017; Rakotomalala
et al., 2022; Solofondranohatra et al., 2020; Tiley
et al., 2024). However, relationships between inverte-
brate and plant biodiversity (e.g., butterflies, termites,
ants, earthworms, grasshoppers) are under-explored
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(e.g., Bond et al., 2022; Iannella et al., 2019; Vorontsova
et al., 2020). Expanded field surveys are needed to better
establish habitat associations for multiple taxa and
groups in different grassy biomes. Lack of plant taxo-
nomic expertise is also a hindrance to evidence-based
management and conservation strategies across the
globe (e.g., Ahrends et al., 2011). Few Malagasy bota-
nists specialize in grass identification, with the number
of grass specialists increasing from zero in 2010 to eight in
2022 (M.S. Vorontsova, personal communication). Even
fewer botanists specialize in other grassy biome plants
(e.g., herbaceous dicots, ericoids, sedges, non-graminoid
monocots such as lilies and orchids, and geoxyles).
Moreover, the taxonomy of heaths (Ericaceae) on
Madagascar is out of date, with ongoing research aiming
to address this knowledge gap (e.g. Hackel et al., 2024). In
particular, the genus Erica is likely key to understanding
grassland-shrubland-savanna dynamics, but the genus is
poorly represented in herbaria. Investment in training and
resources, for example, for specimen collections and to
support Malagasy taxonomists, should be a priority.

Research on the distribution, abundance, and demog-
raphy of plants and animals associated with forests or
open ecosystems in the past and present can also illumi-
nate landscape history, especially where they present as
mosaic landscapes; however, studies on these topics have
been geographically biased toward northern Madagascar
(but see Andriambeloson et al., 2021; Godfrey et al., 2021),
and taxonomically biased toward rodents, lemurs, and
trees (e.g., Andriambeloson et al., 2021; Chikhi &
Sgarlata, 2022; Crowley et al., 2018; Muldoon et al., 2017;
Quémére et al., 2010, 2012; Rakotoarisoa et al., 2013;
Salmona et al., 2017, 2020, 2023; Teixeira, Montade,
et al., 2021; Teixeira, Salmona, et al., 2021; Tiley
et al., 2022). Future research needs to cover more
regions and taxa. There is also a need for natural history
research to develop realistic parameter estimates for demo-
graphic studies (e.g., generation time and mutation rate: Tiley
et al., 2020), and for studies of related plant and animal
genomes that can help to calibrate the timing of demo-
graphic changes for human-introduced species
(e.g., bushpigs, rats, cats, dogs, banana, taro, rice, yam,
coconut, sorghum, sugar cane, indian saffron, and possibly
guinea fowl: Ardalan et al., 2015; Balboa et al., 2024;
Beaujard, 2011; Blench, 2010; Crowther et al., 2016;
Goodman et al., 2013; Herrera et al., 2017; Hixon,
Curtis, Brenner, et al., 2021; Hixon, Douglass, Godfrey,
et al., 2021; Hixon, Douglass, Hixon, et al., 2021; Kull
et al., 2012; Kusuma et al., 2015; Lee et al., 2020; Sauther
et al., 2020). Such data may be instrumental in
reconstructing the spatio-temporal extent, diversity, and
demographic history of extinct species that may have used
or maintained open habitats prior to human coloniza-
tion of Madagascar (e.g., hippopotamuses, elephant birds,

tortoises; Hansford & Turvey, 2022; Kehlmaier et al., 2023).
Increased availability of reference “barcode” DNA
sequences and environmental DNA from soil or feces
can also improve the identification of species overlooked
in biodiversity surveys (e.g., distinguishing grass species;
Ragupathy et al., 2009). With the use of ancient DNA,
these approaches can extend back in time to reveal past
vegetation and faunal dynamics (Orlando et al., 2021;
Pedersen et al., 2015).

Approach 2: Identify and disentangle
disturbance dynamics and biogeophysical
feedbacks across spatio-temporal scales

Globally, disturbance dynamics (e.g., land use, herbivory,
fire) and a variety of other factors (e.g., atmospheric CO2,
geomorphology, hydrology) have substantial and vari-
able impacts on grassy biome form and function
(e.g., Archibald et al., 2019; Armitage et al., 2015; Bond
et al., 2003; Bond & Midgley, 2012; Claussen et al., 1999;
Goel et al., 2020; Lehmann et al., 2011; Ramiadantsoa &
Solofondranohatra, 2021), but these are difficult to dis-
entangle and are poorly accounted for in estimates of
vegetation change. Effective ecosystem management is
therefore limited by poor understanding of how differ-
ent disturbance dynamics interact with flora, fauna,
geomorphology, and soils over millennial scales and
how these dynamics influence the extent and composi-
tion of grassy biomes. In particular, there is a need to
better understand how different land use systems have
interacted with fire and vegetation change in the past
and present (e.g., Archibald et al., 2019; Phelps &
Kaplan, 2017).

Disentangling the drivers of change in grassy biomes
requires analysis of multiple study sites with a broad range
of independently derived palaeoenvironmental proxies
(e.g., pollen, charcoal, XRF spectra, isotope and other bio-
markers, grain size, diatoms: Broothaerts et al., 2023;
Mayle & Iriarte, 2014). To address disconnects in the
spatio-temporal scales of palaeo- and present-day eco-
logical information, functional ecology experiments and
high-resolution palaeo-records are critical for interpreting
long-term disturbance dynamics in grassy biomes. Research
on long-term disturbance dynamics in key grassy biome
regions, such as Madagascar’s Central Highlands, can facili-
tate adaptive and effective grassy biome management with
co-benefits for biodiversity, ecosystem function, and human
livelihoods. Geochemical analyses of sediment and soil sam-
ples (e.g., elemental and isotopic composition, radiocarbon
dating) can also help with reconstructing recent and
long-term links between vegetation, climate, fire, and land
use across diverse landscapes (e.g., Razafimanantsoa, 2022;
Razanamahandry et al., 2022).
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Herbivory

Existing research on Madagascar’s grassy biomes demon-
strates a critical need to better understand how herbi-
vores may have influenced vegetation composition and
extent prior to human colonization, and how this relates
to human arrivals, subsequent environmental changes,
and modern ecosystem functioning (Burney et al., 2003;
Godfrey et al., 2019: i.e., domestic animals from c. 1200 BP

and cultivation from c. 1000 BP: e.g., Crowther et al., 2016;
Dewar & Wright, 1993; Razanatsoa et al., 2022).
Understanding of changing faunal diets, habitats, and
ecology can be facilitated through expanded research
around isotopes (e.g. Phelps, et al., 2025b), faunal mor-
phology and feeding behavior, coprophilous fungi, plant
functional traits, genetic and genomic data, and a vari-
ety of modeling approaches. Grassy biome management
on the island can also be improved by investigating the
roles of wild and domestic fauna in driving Holocene
vegetation dynamics, and comparing these with African
savanna ecology more broadly (Pringle et al., 2023), par-
ticularly regarding changes between herbaceous
(e.g., grasses, sedges, and herbaceous dicots) and woody
vegetation (e.g., trees, shrubs).

Many isotopic studies onMadagascar have focused on the
relative proportions of C3 versus C4 plants in extinct megafau-
nal diets (e.g., Crowley et al., 2021; Godfrey & Crowley, 2016;
Hixon, Curtis, Brenner, et al., 2021; Hixon, Douglass,
Godfrey, et al., 2021; Hixon, Douglass, et al., 2021). This work
is based on the premise that trees, shrubs, and herbs use C3

photosynthesis while most tropical grasses use the C4 photo-
synthetic pathway. However, open biomes can include both
C4 andC3 taxa, requiring expanded spatio-temporal investiga-
tion of a variety of grassy biome plants (e.g., Bond et al., 2008;
Hempson et al., 2015). Further, most work characterizing the
isotopic signatures of modern vegetation has focused on vege-
tation outside of Madagascar’s grassy biomes (but see
Crowley, Schmidt, et al., 2023). More research is therefore
needed to characterize the isotopic signatures of plants in
Madagascar’s open environments (especially for a range of
grasses, herbs, sedges, and ericoids); these data can, in turn,
be used to reconstruct presence, and possibly relative abun-
dance, of different types of vegetation in the past using pollen,
phytoliths, speleothems, soil organic matter, osseous tis-
sues from herbivores, and other proxies (e.g., Aleman
et al., 2012; Crowley et al., 2021; Faina et al., 2021; Hixon,
Curtis, Brenner, et al., 2021; Hixon, Douglass, Godfrey,
et al., 2021; Hixon, Douglass, et al., 2021;
Razanamahandry et al., 2022). Expanding this research
will also enable comparison of grassy ecosystems
between Madagascar and other parts of the tropics
(e.g., Bakker et al., 2016; Gill, 2014; Staver et al., 2021;
Phelps, et al., 2025b).

Improved understanding of herbivore dynamics can
also come from “cafeteria” experiments, which inves-
tigate the dietary preferences of herbivores when
presented with different environments and food choices
(e.g., Burleigh & Arnold, 1986; Cerling et al., 2008; van
der Sluis et al., 2014), with the caveat that extant fauna
and environments may not be exact analogues for extinct
megafauna and the conditions they experienced. Aldabra
tortoises were recently introduced in northwest
Madagascar (Anjajavy reserve) and may provide an ideal
case study for such experiments (Pedrono et al., 2020).
Documentation of the spectrum of functional traits that
reflect herbivore attraction to, and avoidance of, different
types of plants within grassy biomes (e.g., grasses, herbs,
sedges, trees, and shrubs, including succulents and eri-
coids) would be particularly informative (e.g., Archibald
et al., 2019). Further research on fire-herbivory interac-
tions and how these relate to biodiversity is also needed
to understand and maximize benefits among livelihoods,
ecosystem function, and biodiversity (e.g., Hempson
et al., 2019; Martin et al., 2022).

Fire

There is an increasing need to determine and calibrate
recent and past fire regimes on Madagascar (e.g., relating
to fire emissions and carbon storage: Hawthorne
et al., 2018), clarify the processes that have shaped them
through time (e.g., changes in climate, vegetation, land
use, and herbivory), and evaluate how they relate to trop-
ical fire regimes more broadly (e.g., Case & Staver, 2016;
Laris et al., 2020; Phelps et al., 2022; Singh et al., 2023,
2024). In particular, studies on the relationships between
fire regimes, small-scale fires, and the complex drivers of
landscape degradation are needed. For recent decades,
remote sensing information (e.g., MODIS-derived burned
area products: Giglio et al., 2018) has facilitated characteri-
zation and comparison of fire regimes at the landscape
scale (e.g., Phelps et al., 2022). The increasing availability
of high-resolution satellite images (e.g., Sentinel-2 since
2015) has also enabled detection of small-scale fires, which
can cumulatively make up large portions of burned area
(Fern�andez-García & Kull, 2023; Ramo et al., 2021; Roteta
et al., 2019; Fern�andez-García, Phelps et al., 2024).

Knowledge of ancient fire regimes is considerably
more limited. New studies and methodological applica-
tions are required to link long-term fire patterns to
adaptive fire management strategies today (e.g.
Novenko, et al., 2022a; Novenko, et al., 2022b). For
example, high-resolution charcoal analysis of
palaeo-sediments and soils can help to disentangle
Holocene changes in fire-human-vegetation
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relationships (e.g., fire intensity; Hawthorne et al., 2018;
Mustaphi et al., 2022). These long-term data will help
improve predictions of future fire-vegetation relation-
ships, which are central to informing decisions around fire
risk associated with land conversion, tree planting, and
ecosystem restoration (e.g., balancing essential timber and
fuel wood while ensuring careful management of high
flammable species; Kull, 2004; Phelps et al., 2022;
Veldman et al., 2019).

Land use

Combined with empirical investigation of fire, herbivory,
and biodiversity patterns, improved characterization of
land use processes in the past and present can help to
maximize benefits between livelihoods and ecosystem
function (Phelps & Kaplan, 2017; Phelps, Chevalier et al.,
2020; Phelps, Broennimann et al., 2020; Phelps, Davis
et al., in press; Morrison et al., 2021), e.g., by accurately
predicting ecosystem change, informing ecosystem restora-
tion efforts through participatory land use mapping, and
developing adaptive land management strategies. In par-
ticular, despite being central to human livelihoods, animal
husbandry is often overlooked in studies of land use and
land cover change, due to lacking characterization of land
use systems and poor differentiation between land cover
and land use (Phelps & Kaplan, 2017). Improved coverage
of social science surveys and ethnohistorical records can
help to clarify the functions, cultural significance, and dis-
tribution of different land use practices, as well as how
land use interacts with biodiversity and ecosystem func-
tion across heterogeneous landscapes (e.g., ethnographic,
ethnobotanical, and economic-demographic-livelihood;
e.g. Randall, 2015).

Geomorphology

Evaluating changes in landforms over different time
scales can provide insight into past changes in vegetation
cover and land use (e.g. Liu et al., 2024). Erosional
gullies, called lavaka (meaning “hole” in Malagasy), are
the most visible aspect of hillslope erosion on
Madagascar. They were prominent before human
arrivals, and may be particularly informative (Mietton
et al., 2006, 2014; Wells & Andriamihaja, 1997). In other
regions, erosional gullies can also be referred to as
Vocorocas (i.e., in Brazil: Chaves, 1994; Vieira, 2008), or
beng gang (i.e., in China: Jiongxin, 1996; Liao et al.,
2019; Wei et al., 2021). Although initial work has
established the broad-scale controls of lavaka formation
and dynamics on Madagascar (e.g., Broothaerts

et al., 2023; Brosens et al., 2022; Brosens et al., 2023;
Cox et al., 2010; Cox, King Phillips et al., 2024; Wang
et al., 2021; Wells & Andriamihaja, 1997), few studies have
quantitatively and critically addressed questions about
their long-term development, including the role of differ-
ent human land uses, and how lavaka formation processes
relate to other aspects of erosion and landform change
(e.g., Gosling et al., 2012; Scholtz et al., 2014; Zhou
et al., 2022). For example, Brosens et al. (2022) estimated
that the number of erosional gullies in the Lake Alaotra
region (northeast Central Highlands) grew rapidly from
1949 to 2010 CE and inferred that the regional rate of
lavaka formation and sediment loss increased around the
same time as human settlement, ca. 1000 BP. However,
longitudinal analysis contradicts these findings, showing
instead that lavaka erosional activity decreased in the
same area and over the same time period (Cox, King
Phillips, et al., 2024).

There are many uncertainties in the understanding of
lavaka life cycles, and of gullies in general; these can vary
(sub-)regionally (Voarintsoa et al., 2012), and are not suf-
ficiently constrained to ensure reliable model outputs.
Studies on the long-term rates of lavaka formation and
stabilization are needed that can contextualize recent
rates of vegetation change and soil erosion using aerial
photography, satellite imagery, isotopic analysis (e.g.,
Igbokwe et al., 2008; Mabit et al., 2018). Future
approaches could include mass-balance modeling to test
landscape stability, which requires reliable data on vol-
ume losses and landscape lowering rates (e.g., Brosens
et al., 2023).

Equally important is the analysis of how lavaka
dynamics impact land use, soil, and vegetation change;
and analyzing human interactions with lavaka is
required to understand spatio-temporal heterogeneity
in their historical relationships (e.g., Razanamahandry
et al., 2022). Recent work has found that lavaka pro-
vide patch environments and fire refugia for trees
and shrubs in the grassy highlands (Cox, Carrère,
et al., 2024). However, the extent to which Malagasy
farmers integrate lavaka into their land husbandry,
taking advantage of higher moisture levels and more
fertile substrates, is only now beginning to be exam-
ined (Cox, Carrère, et al., 2024). Knowledge is also still
limited regarding how geomorphological change on
Madagascar shaped biodiversity patterns in grassy biomes
before human arrival (Stephenson et al., 2021). It is clear,
however, that narratives of human causation for
geomorphologic change—on Madagascar and in other for-
mer European colonies—are often oversimplified, as the
geomorphology, geology, soils, vegetation, and land use
are highly complex and multi-factored, requiring improved
documentation (e.g., Collins et al., 2022; Cox, Carrère,
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et al., 2024; Cox, King Phillips, et al., 2024; Crowley &
Sparks, 2018; Dewitte et al., 2013; Lehmann et al., 2022;
Vågen, 2006; Voarintsoa et al., 2012). Useful future studies
will investigate how a variety of geomorphic factors have
affected Holocene vegetation dynamics and clarify the
roles that people have played.

Approach 3: Empirically examine
degradation narratives and engage local
perspectives in scientific research

There is a need to shift scientific narratives and commu-
nication away from widespread simplistic assumptions,
and toward empirical and nuanced investigation of the
complex drivers underpinning vegetation change and
landscape degradation (e.g., fire-degradation relation-
ships across ecosystems: Bliege Bird et al., 2020;
Kull, 2000; Phelps et al., 2022). This will not only deepen
the understanding of vegetation change and guide land
management, but also encourage scientifically informed
exchanges between researchers, policy makers, and those
living in and interacting with grassy biomes. There is a
perpetual need for collaboration between researchers and
local, regional, and (inter)national institutions, as well as
directly with local stakeholders, to root research and man-
agement in local socio-ecological context (i.e., livelihood
demands and local perspectives), communicate results
appropriately, and bolster informed land stewardship.
In particular, ethnographic and ethnohistorical
accounts are required to understand how diverse stake-
holders from local communities perceive and engage
with grassy biomes (e.g., Kariuki et al., 2022).
Transdisciplinary engagement can improve the tools
and topics used to inform ethnographic inquiries, and
maximize their relevance to effective and co-beneficial
land management decisions.

Harness community perspectives and establish
fluid lines of communication between research,
management, and stakeholders

Visual and auditory communication tools provide power-
ful field resources to facilitate stakeholder engagement
and collaboration around grassy biome research and
management (e.g., Newman et al., 2020). For example,
spatial and temporal dimensions of grassy biome evolution
and stewardship can be explored through collaborative
mapping exchanges (Capitani et al., 2016; Dunn, 2007;
Kariuki et al., 2021, 2022; Larrain & McCall, 2019;
Ramirez-Gomez et al., 2015), strategy gaming workshops
(Bodonirina et al., 2018; Ravaka et al., 2021; Reibelt

et al., 2021; Waeber et al., 2021), online conversation
forums, virtual reality and 3D simulations (e.g., Davis
et al., 2021; Fisher et al., 2019), web-accessible video clips
surrounding community, conservation, and research knowl-
edge (Colloredo-Mansfeld et al., 2020), animations
(e.g., Development Corridors Partnership, 2021), posters,
radio shows, podcasts, and artwork (e.g., Wang et al., 2017;
Feom’bezo [voices of the Vezo] radio show). These commu-
nication tools require translation into international and
local languages, and often technology and internet access.
Direct involvement of local stakeholders in research is
also needed, through researchers traveling to commu-
nities or delegations of community members visit-
ing research institutions, to establish communication,
brainstorm research plans, and develop communica-
tion networks among stakeholders from different regions
(e.g., Vezo ecological exchange project: Douglass, Hixon,
et al., 2019; Douglass, Morales, et al., 2019; Douglass,
Walz, et al., 2019).

Given that stakeholders are typically diverse groups
of people with different knowledge, perspectives, and
opinions, ample resources and time are required to
develop meaningful engagement between researchers
and local communities, and to build trust and transpar-
ent, reflective communication. In addition, researchers
need to strive to represent all local views fully and hon-
estly, and avoid selectively emphasizing views that sup-
port their own. Collaboration with local land users can
also improve scientific understanding of recent political,
economic, and social change, and how these factors may
relate to land cover changes observed with remote sens-
ing. Funding is needed to support such communication
initiatives, which can leverage impactful, long-term con-
tributions to land management. Furthermore, providing
support, training, and opportunities for local scholars
can help to improve the recognition and uptake of
community perspectives in research and land manage-
ment (e.g., Razanatsoa, Andriantsaralaza, et al., 2021).
Such measures can bolster adaptive land management
decisions at multiple levels, improve the accessibility
and relevance of scientific research to a broader audi-
ence, and develop best research practices and ethics
(Davis et al., 2021; Schneider et al., 2020; Wilmé
et al., 2016).

Open and direct lines of communication (e.g., those
developed through participatory work: Douglass &
Rasolondrainy, 2021; Garcia et al., 2022; Kariuki
et al., 2022) are essential for supporting effective,
up-to-date, and adaptive management strategies.
Policy and public opinion can take long periods of time
to incorporate scientific research findings, especially
when messages are complex and nuanced. However,
established lines of communication between researchers
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and land use managers can facilitate adaptive, collabo-
rative research actions on more reasonable timescales
with appropriate stakeholders. Proactive communica-
tion campaigns with local stakeholders are desperately
needed to inform scientific inquiries and to steer
research toward questions of topical importance to
grassy biome management.

Identify and overcome misconceptions and
oversimplifications in scientific research

There is a need to expand research beyond oversimplifi-
cations of ecosystem characteristics—“natural versus
anthropogenic,” “ancient versus anthropogenic,” “grassland
versus woodland,” “tree versus grass,” “grazer versus
browser”—toward fuller and more nuanced investiga-
tion of ecosystem diversity and function. In particular,
more information is needed regarding the biodiversity
and disturbance characteristics, such as fire and herbiv-
ory functional traits, for a range of C3 and C4 plants.
This is especially important for C3 plants that can form
large components of grassy biomes (e.g., herbaceous
dicots, ericoids, non-graminoid monocots such as lilies
and orchids, geoxyles, C3 grasses, and sedges; Hempson
et al., 2015). Basic characterization of biodiversity and
land use practices is also needed to reverse narratives
that all grassy biomes are similar and of limited ecologi-
cal importance, expand understanding of fire patterns
and use, and promote effective biodiversity management
(e.g., Haines-Young, 2009; Kull & Lehmann, 2022;
Lehmann et al., 2022; Marchant, 2010; Phelps
et al., 2022). Further, interdisciplinary exploration is
needed to clarify how trees and shrubs occurring in
grassy biomes, such as Uapaca bojeri (tapia), Sarcolaena
oblongifolia, and Faurea forficuliflora, have evolved, or
how their distribution has changed in terms of woody
germination and recruitment, composition and struc-
ture, and decadal dynamics observed with remote sens-
ing imagery. To address these knowledge gaps, more
nuanced investigation of human-environment interac-
tion is needed, which considers human modifications as
part of nature, but also seeks to empirically identify
regional heterogeneity and interrelationships between
biodiversity and disturbance dynamics in grassy eco-
systems across the globe (e.g., Burney, 1987; Lehmann
et al., 2011, 2022; Phelps & Kaplan, 2017; Phelps,
Broennimann et al., 2020; Phelps, Chevalier et al., 2020;
Davis et al., 2024; Phelps et al., 2022; Phelps, et al.,
2025b). Practical future studies will inform adaptive
land management strategies by disentangling the variety
of ways in which both human land use and other drivers of

environmental change modify landscapes (e.g., Razanatsoa,
Virah-Sawmy, et al., 2021).

CONCLUSION

Transdisciplinary understanding of vegetation dynamics
in tropical grassy biomes is urgently needed to support
sustainable ecosystems and livelihoods globally. We
provide a framework that offers four contributions to
improving research and management of grassy biomes
by focusing on Madagascar as a microcosm of the
global tropics: (1) a globally common terminology
reflecting ecosystem function and disturbance processes;
(2) a summary of current data contributions and knowledge
gaps for research on Madagascar’s grassy biomes;
(3) 20 Madagascar-inspired research questions to move
grassy biome science and management forward; and
(4) three key approaches to fostering transdisciplinary,
inclusive research and management practices: improved
integration of past, present, and future datasets; enhanced
understanding of disturbance dynamics; and examination
of degradation narratives and bolstering local perspectives.
Our framework offers a foundation for grassy biome
research that can support more optimal management of
biodiversity, livelihoods, and ecosystem function—both
on Madagascar and across the globe.
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