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Summary 

 

Among archaeologists using remote sensing there is 

tremendous potential for the use of deep learning models for 

the prospection of archaeological features. The need for 

relatively large training datasets, technical expertise, and 

computational requirements, however, has slowed the 

adoption of these techniques. Here, we train a series of deep 

learning models using two different model architectures (i.e., 

single-stage and dual-stage) to detect shell rings, a circular 

midden feature that is found across the American Southeast. 

Native American groups constructed these features during 

the mid-Holocene (5000-3000 cal B.P.). These deposits 

offer important information about pre-European contact 

socioeconomic organization among Native American groups 

(Figure 1). In the coastal area of the Atlantic, however, these 

features are relatively rare: only about 50 shell rings have 

been documented by archaeologists to date. To expand our 

knowledge of these features, we test RetinaNet and Mask-

RCNN deep learning models as means of detecting shell 

rings from wide-area LiDAR data using extremely small 

training datasets. We demonstrate that the use of “negative” 

training data to identify non-archaeological features helps to 

improve model performance. Furthermore, we show that 

while popular dual-stage detectors like Mask R-CNN 

perform better than single-stage models like RetinaNet, 

single-stage models still achieve acceptable levels of 

accuracy and require a fraction of the computational and 

time requirements of dual-stage detectors.  

 

Introduction 

 

Shell rings are circular refuse piles composed of plant and 

animal remains that surround an empty central plaza (Russo 

2004; Sanger 2017). These deposits represent some of the 

earliest evidence of permanent human occupation in the 

coastal regions of the American Southeast (Figure 1; Russo 

2004). The nature of past community activities that produced 

these shell-rings remains debated among archaeologists, 

some of whom have focused on identifying the degree to 

which these deposits served as residential, ritualistic, or a 

mixture of mundane and ceremonial activities (Russo 2004; 

Sanger and Ogden 2018; Trinkley 1985). 

 

Despite continued investigation, current archaeological 

knowledge of shell ring distribution is limited, as only about 

50 have been recorded in the entirety of the region (Figure 

1). Because of their location is often within difficult-to-

survey, dense forests and marshlands, these deposits are 

mostly known on the basis of large examples that are the 

most recognizable and most easily accessed (Davis et al. 

2020). As a result, archaeologists lack a full inventory of 

extant shell rings that would allow for a comprehensive 

investigation into the morphological variability of shell rings 

and the range of contexts in which they are found. 

 

Deep learning, a branch of machine learning, has been 

rapidly gaining popularity among archaeologists seeking to 

identify features among large remote sensing datasets in the 

past several years (e.g., Caspari and Crespo 2019; Trier, 

Reksten, and Løseth 2021). Convolutional Neural Networks 

(CNNs), in particular, have proven highly effective at 

increasing true positives while reducing false positive results 

in object detection studies (e.g., Caspari and Crespo 2019; 

Lambers, Verschoof-van der Vaart, and Bourgeois 2019). 

Yet, applications of deep learning within archaeology have 

been limited because of the amount of training data required 

 

Figure 1:  Location of confirmed shell rings surrounding the study 

area (black box). Service Layer Credits: ESRI, HERE, GARMIN, 
OpenStreetMap contributions, and the GIS User Community 
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to train these models and the computational cost of these 

methods.  

 

Within deep learning, object detection tasks are achieved by 

one of two means. On the one hand, one-stage detectors 

attempt to identify features by taking an input image and 

learning the class probabilities and bounding box 

coordinates, similarly to a regression problem. On the other 

hand, two-stage detectors offer advantages in using the 

results of an initial stages analysis to generate a sparse set of 

potential feature maps that should contain all objects within 

the data while filtering out most negative locations. The 

second stage then identifies the potential feature maps as 

either part of the foreground or background (Lin, Dollár, et 

al. 2017). Two-stage detectors (e.g., R-CNNs) often achieve 

greater accuracy than one-stage detectors because of their 

ability to narrow down candidate objects for detection, but 

some single stage detectors are beginning to close this gap 

(e.g., Single Shot Detectors [SSD] (Liu et al. 2016), You-

Only-Look-Once [YOLO] (Redmon et al. 2016), and 

RetinaNet (Lin, Dollár, et al. 2017; Lin, Goyal, et al. 2017). 

 

In this paper, we demonstrate how shell rings can be 

successfully identified from remote sensing data using both 

single- and dual-stage deep learning models trained with 

very small sample sizes (n < 30). Our approach makes use 

of augmentation (i.e., the creation of synthetic data to 

artificially increase training data sample sizes), the inclusion 

of “negative” training classes to filter out potential false 

positives, and transfer learning techniques. We accomplish 

this task by testing two RetinaNet models (Lin, Goyal, et al. 

2017; Lin, Dollár, et al. 2017) using a single-class dataset 

(shell rings) and a three-class dataset (shell rings, mounds, 

and “modern” (or negative) features) and two Mask R-CNN 

models (He et al. 2017) using the same set of training data 

classes. 

 

Materials & Methods 

 

We acquired LiDAR for Beaufort County from the National 

Oceanic and Atmospheric Administration (NOAA) with 

1.3m nominal point spacing and 15cm vertical RMSE. We 

also acquired LiDAR for Charleston County from the South 

Carolina Department of Natural Resources (DNR) with 

1.3m nominal point spacing and 30cm vertical RMSE. These 

two counties (a total area of 5,900 km2) contain over a dozen 

known shell ring features. We then created digital elevation 

models (DEMs) with 1.5m spatial resolution by 

interpolating the LiDAR point data using inverse distance 

weighting (IDW).  

 

Next, we created a hillshade map and a slope map from 

LiDAR point data. Both of these visualizations have 

improved object detection tasks within archaeology 

(Devereux, Amable, and Crow 2008). We then created a 

composite multiband raster in ArcGIS Pro (version 2.6.2; 

ESRI 2020) consisting of hillshade, slope, and the original 

DEM. 

 

Using the multiband raster, we generated training data using 

the Label Training Data for Deep Learning Analysis tool in 

ArcGIS Pro. We created these training data in two formats: 

Pascal VOC for the RetinaNet models and Mask_RCNN 

format for the Mask R-CNN models. We use two kinds of 

training data consisting of 1 class (shell rings) and 3 classes 

(shell rings, mounds, and modern, non-archaeological 

objects). These two sets of training data were devised to see 

if adding additional mounded features would reduce 

misclassifications of shell rings. The “modern” class is used 

as a check against false positives that resemble 

archaeological ring and mound features. In total, we selected 

16 shell rings located in our study area, 21 circular mounds, 

and 36 modern structures as training samples. 

 

Next, to increase our sample sizes, we augmented the 

training data using 45-degree rotations, thereby synthetically 

increasing our sample sizes by a factor of 8. For RetinaNet 

models, we generated a total of 808 images of shell rings, 

880 mounds, and 1860 “modern” samples. We then exported 

these training data as 200x200 pixel images using the Export 

Training Data for Deep Learning tool in ArcGIS Pro. For 

Mask R-CNN models, our training data consisted of 776 

images of shell rings, 720 mounds, and 1316 “modern” 

samples. These training data consist of 200x200 pixel 

images that were produced by the Export Training Data for 

Deep Learning tool in ArcGIS Pro. 

 

Next, we trained two RetinaNet models (Lin, Goyal, et al. 

2017; Lin, Dollár, et al. 2017) using the single-class and 

three-class training data with a batch size of 8 and a 

ResNet50 backbone architecture (He et al. 2017). ResNet50 

is a transfer learning architecture that is trained on the 

ImageNet dataset with 50 layers. This step helps to improve 

 

Figure 2:  RetinaNet model architecture. A and B represent the FPN, 

with A consisting of a backbone model (in our case ResNet 50). 

Predictions made in C) are divided into two components D) Class 
and box subnets. Class subnets determine the probability of a given 

area containing an object. Box subnets label objects within class 

subnets. 
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both the speed and accuracy of model training. RetinaNet 

operates on four main components (Figure 2): a bottom-up 

pathway, a top-down pathway, a classification subnetwork, 

and a regression subnetwork. The bottom-up pathway 

calculates a set of features at particular locations (or feature 

maps) at multiple scales. The top-down pathway up-samples 

the coarser feature maps and merges them with the bottom-

up feature maps of the same size. Next, the classification 

subnetwork calculates the probability of an object being 

present at a given location and belonging to a specific class 

(defined by training data). The regression subnetwork then  

 creates a labeled object from that classification. 

 

Since Mask R-CNN architecture (He et al. 2017) has proven 

useful for detecting archaeological deposits (Bonhage et al. 

2021), we trained two Mask R-CNN models using the 

single-class and three-class training data using a batch size 

of 6 and a ResNet50 backbone architecture (Figure 3). Batch 

size was lowered based on prior testing which showed higher 

batches to perform worse for this model type.   

 

We set up the training procedure to run the model 50 times 

and to stop training when the model no longer improved to 

save time and processing power. We withheld 10% of the 

training data for validation of each model’s performance.  

 

 

 

Results 

 

 Our RetinaNet models required between 2 and 3 hours to 

run on a computer with a NVIDIA Quadro p4000 GPU, an 

Intel(R) Core(TM) i7-7700K CPU @ 4.20GHz, 4200 Mhz, 

4 Core(s), 8 Logical Processor(s), and 64 GB of RAM. 

Accuracy of shell ring detection rated by validation data was 

63% for the model trained on the single-class data and 69% 

for the model trained on the three-class data (Table 1).  

 

Our Mask R-CNN models required 50-60 hours to run on the 

same machine as the RetinaNet models (Figure 4). The 

model trained on the single-class data identified shell rings 

with 65% accuracy and the model trained on the three-class 

data identified shell rings with 75% accuracy (Table 1).  

 

When assessing the models trained on the three-class data, 

the RetinaNet model re-identified a total of 15 out of 16 pre-

documented shell rings (93.75%), 12 out of 21 pre-

documented mounds (57.14%) and 29 out of 36 (80.56%) 

“modern” locations. The Mask R-CNN model trained on the 

three-class data reidentified all 16 pre-documented shell 

rings (100%) 20 out of 21 pre-documented mounds (95.2%), 

and 30 out of 36 (83.33%) “modern” features. 

 

 

 These results demonstrate that from a computational 

requirement standpoint, single-stage detectors like 

RetinaNet should be considered by archaeologists aiming to 

improve archaeological site inventories and prospection 

efforts. The use of these models, however, should be 

iterative to ensure that as new data is gathered, models are 

retrained to improve their performance. In contrast, if the 

goal is to get the most accurate results despite computational 

costs, then dual-stage detectors like Mask R-CNNs are 

probably the best method, as they attain higher levels of 

accuracy even with limited training data. 

 

Conclusions 

 

Previous investigations of shell rings have relied on ground 

surveys that are largely opportunistic and have resulted in a 

haphazard and incomplete understanding of total abundance 

and distribution (Davis et al. 2020). Here, we demonstrate 

that deep learning algorithms can be used to successfully 

identify shell ring features in LiDAR despite extremely 

small available training datasets. The key to our success was 

in the use of “negative” classes, which serve to identify 

 

Figure 3:  Framework for Mask R-CNN object detection (after He 

et al. 2017). The Faster R-CNN identifies regions of interest (ROIs) 

and aligns them (RoIAlign) to preserve spatial information. A Mask 
is then created using two CNNs, which segments the image into 

objects. The Faster-R-CNN then classifies these objects based on 

overall confidence scores. 

Model Type # of Classes Validation Accuracy 

(Rings, Mounds, 
Modern) 

Mask R-CNN  1 (shell rings) 65% 

Mask R-CNN 3 (shell rings, 

mounds, 

modern) 

75%, 80%, 60% 

RetinaNet 1 (shell rings) 63% 

RetinaNet 3 (shell rings, 
mounds, modern) 

69%, 41%, 54% 

Table 1:  Accuracy metrics for the tested deep learning models. 

All models were trained on Resnet-50 backbone architectures. 
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features with similar characteristics to archaeological 

deposits, but are false positives.  

 

Additionally, this study demonstrates the power of single-

stage deep learning models like RetinaNet for archaeological 

prospection research. While the accuracy attained by these 

models is comparably lower than more popular dual-stage 

models like R-CNNs, single-stage models allow for rapid 

assessment, as they can be trained using fewer 

computational resources and in a faster timeframe than dual-

stage models. Despite this fact, there have been virtually no 

archaeological studies that have utilized single-stage deep 

learning architectures.  

 

With continued research, deep learning models can be 

applied to record shell rings – as well as other rare or under-

recorded archaeological features – to improve our 

understanding of landscape-level site distributions. This 

work also holds promise for the implementation of remote 

sensing analyses in areas where archaeological data is 

currently and overwhelmingly absent (i.e., places with 

limited prior archaeological investigations, conflict zones 

where work cannot be safely conducted, etc.). Methods like 

single-stage deep learning models trained on limited sample 

sizes have the potential to play a major role in locating new 

archaeological sites in areas threatened by anthropogenic 

and natural forces, including areas where there are major 

gaps in archaeological information. 
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B. 

   

 

Figure 4:  A. Loss values for RetinaNet model trained on three-class 

dataset. B. Loss values for Mask R-CNN model trained on three-

class data.  

10.1190/segam2021-3574963.1
Page    3268

© 2021 Society of Exploration Geophysicists
First International Meeting for Applied Geoscience & Energy

D
ow

nl
oa

de
d 

09
/0

2/
21

 to
 1

04
.3

9.
11

3.
86

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
S

E
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/p
ag

e/
po

lic
ie

s/
te

rm
s

D
O

I:1
0.

11
90

/s
eg

am
20

21
-3

57
49

63
.1



REFERENCES

Bonhage, A., M. Eltaher, T. Raab, M. Breuß, A. Raab, and A. Schneider, 2021, A modified mask region- based convolutional neural network approach
for the automated detection of archaeological sites on high-resolution light detection and ranging-derived digital elevation models in the north
German lowland: Archaeological Prospection, 28, 177–186, doi: https://doi.org/10.1002/arp.1806.

Caspari, G., and P. Crespo, 2019, Convolutional neural networks for archaeological site detection – finding ‘princely’ tombs: Journal of Archaeo-
logical Science, 110, 104998, doi: https://doi.org/10.1016/j.jas.2019.104998.

Davis, D. S., R. J. DiNapoli, M. C. Sanger, and C. P. Lipo, 2020, The integration of Lidar and legacy datasets provides improved explanations for the
spatial patterning of shell rings in the American southeast: Advances in Archaeological Practice, 8, 361–375, doi: https://doi.org/10.1017/aap.2020
.18.

Devereux, B. J., G. S. Amable, and P. Crow, 2008, Visualisation of LiDAR terrain models for archaeological feature detection: Antiquity, 82, 470–479,
doi: https://doi.org/10.1017/S0003598X00096952.

ESRI, 2020, ArcGIS Pro (version 2.6.2): Environmental Systems Research Institute, Inc., https://www.esri.com/en-us/arcgis/products/arcgis-pro/.
He, K., G. Gkioxari, P. Dollár, and R. Girshick, 2017, Mask R-Cnn: Proceedings of the IEEE International Conference on Computer Vision, 2961–

2969, doi: https://doi.org/10.1109/ICCV.2017.322.
Lambers, K., W. Verschoof-van der Vaart, and Q. Bourgeois, 2019, Integrating remote sensing, machine learning, and citizen science in Dutch

archaeological prospection: Remote Sensing, 11, 794, doi: https://doi.org/10.3390/rs11070794.
Lin, T.-Y., P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie, 2017, Feature pyramid networks for object detection: IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 936–944, doi: https://doi.org/10.1109/CVPR.2017.106.
Lin, T.-Y., P. Goyal, R. Girshick, K. He, and P. Dollár, 2017, Focal loss for dense object detection: IEEE International Conference on Computer Vision

(ICCV), 2999–3007, doi: https://doi.org/10.1109/ICCV.2017.324.
Russo, M., 2004, Measuring shell rings for social inequality, in Signs of Power: The Rise of Cultural Complexity in the Southeast, J. L. Gibson and P.

J. Carr, eds., University of Alabama Press, 26–70.
Sanger, M. C., 2017, Coils, slabs, and molds: Examining community affiliation between Late Archaic shell ring communities using radiographic

imagery of pottery: Southeastern Archaeology, 36, 95–109, doi: https://doi.org/10.1080/0734578X.2016.1267466.
Sanger, M. C., and Q.-M. Ogden, 2018, Determining the use of Late Archaic shell rings using lithic data: ‘Ceremonial Villages’ and the importance of

stone: Southeastern Archaeology, 37, 232–252, doi: https://doi.org/10.1080/0734578X.2017.1398995.
Trier, Ø. D., J. H. Reksten, and K. Løseth, 2021, Automated mapping of cultural heritage in Norway from airborne Lidar data using faster R-CNN:

International Journal of Applied Earth Observation and Geoinformation 95, 102241, doi: https://doi.org/10.1016/j.jag.2020.102241.
Trinkley, M. B., 1985, “The form and function of South Carolina’s Early Woodland shell rings,” in Structure and Process in Southeastern Archae-

ology, R. S. Dickens and H. T. Ward, eds., 102–118.

10.1190/segam2021-3574963.1
Page    3269

© 2021 Society of Exploration Geophysicists
First International Meeting for Applied Geoscience & Energy

D
ow

nl
oa

de
d 

09
/0

2/
21

 to
 1

04
.3

9.
11

3.
86

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
S

E
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/p
ag

e/
po

lic
ie

s/
te

rm
s

D
O

I:1
0.

11
90

/s
eg

am
20

21
-3

57
49

63
.1

http://dx.doi.org/10.1002/arp.1806
http://dx.doi.org/10.1002/arp.1806
http://dx.doi.org/10.1002/arp.1806
http://dx.doi.org/10.1002/arp.1806
http://dx.doi.org/10.1016/j.jas.2019.104998
http://dx.doi.org/10.1016/j.jas.2019.104998
http://dx.doi.org/10.1016/j.jas.2019.104998
http://dx.doi.org/10.1016/j.jas.2019.104998
http://dx.doi.org/10.1016/j.jas.2019.104998
http://dx.doi.org/10.1016/j.jas.2019.104998
http://dx.doi.org/10.1017/aap.2020.18
http://dx.doi.org/10.1017/aap.2020.18
http://dx.doi.org/10.1017/aap.2020.18
http://dx.doi.org/10.1017/aap.2020.18
http://dx.doi.org/10.1017/aap.2020.18
http://dx.doi.org/10.1017/S0003598X00096952
http://dx.doi.org/10.1017/S0003598X00096952
http://dx.doi.org/10.1017/S0003598X00096952
https://www.esri.com/en-us/arcgis/products/arcgis-pro/
https://www.esri.com/en-us/arcgis/products/arcgis-pro/
https://www.esri.com/en-us/arcgis/products/arcgis-pro/
http://dx.doi.org/10.1109/ICCV.2017.322
http://dx.doi.org/10.1109/ICCV.2017.322
http://dx.doi.org/10.1109/ICCV.2017.322
http://dx.doi.org/10.1109/ICCV.2017.322
http://dx.doi.org/10.1109/ICCV.2017.322
http://dx.doi.org/10.3390/rs11070794
http://dx.doi.org/10.3390/rs11070794
http://dx.doi.org/10.3390/rs11070794
http://dx.doi.org/10.1109/CVPR.2017.106
http://dx.doi.org/10.1109/CVPR.2017.106
http://dx.doi.org/10.1109/CVPR.2017.106
http://dx.doi.org/10.1109/CVPR.2017.106
http://dx.doi.org/10.1109/CVPR.2017.106
http://dx.doi.org/10.1109/ICCV.2017.324
http://dx.doi.org/10.1109/ICCV.2017.324
http://dx.doi.org/10.1109/ICCV.2017.324
http://dx.doi.org/10.1109/ICCV.2017.324
http://dx.doi.org/10.1109/ICCV.2017.324
http://dx.doi.org/10.1080/0734578X.2016.1267466
http://dx.doi.org/10.1080/0734578X.2016.1267466
http://dx.doi.org/10.1080/0734578X.2016.1267466
http://dx.doi.org/10.1080/0734578X.2016.1267466
http://dx.doi.org/10.1080/0734578X.2016.1267466
http://dx.doi.org/10.1080/0734578X.2017.1398995
http://dx.doi.org/10.1080/0734578X.2017.1398995
http://dx.doi.org/10.1080/0734578X.2017.1398995
http://dx.doi.org/10.1080/0734578X.2017.1398995
http://dx.doi.org/10.1080/0734578X.2017.1398995
http://dx.doi.org/10.1016/j.jag.2020.102241
http://dx.doi.org/10.1016/j.jag.2020.102241
http://dx.doi.org/10.1016/j.jag.2020.102241
http://dx.doi.org/10.1016/j.jag.2020.102241
http://dx.doi.org/10.1016/j.jag.2020.102241
http://dx.doi.org/10.1016/j.jag.2020.102241

	3574963
	old-segam2021-3574963.1

