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A B S T R A C T

One persistent archaeological challenge is the generation of systematic documentation for the extant archae-
ological record at the scale of landscapes. Often our information for landscapes is the result of haphazard and
patchy surveys that stem from opportunistic and historic efforts. Consequently, overall knowledge of some re-
gions is the product of ad hoc survey area delineation, degree of accessibility, effective ground visibility, and the
fraction of areas that have survived destruction from development. These factors subsequently contribute un-
known biases to our understanding of chronology, settlements patterns, interaction, and exchange. Aerial remote
sensing offers one potential solution for improving our knowledge of landscapes. With sensors that include
LiDAR, remote sensing can identify archaeological features that are otherwise obscured by vegetation. Object-
based image analyses (OBIA) of remote sensing data hold particular promise to facilitate regional analyses
thorough the automation of archaeological feature recognition. Here, we explore four OBIA algorithms for ar-
tificial mound feature detection using LiDAR from Beaufort County, South Carolina: multiresolution segmen-
tation, inverse depression analysis, template matching, and a newly designed algorithm that combines elements
of segmentation and template matching. While no single algorithm proved to be consistently superior to the
others, a combination of methods is shown to be the most effective for detecting archaeological features.

1. Introduction

At the time of European arrival into Eastern North America, the
archaeological record included thousands of intact earth and shell
mound structures (Anderson, 2012; Howe, 2014; Thomas, 1894). Be-
ginning in the 19th century, these deposits became the focus of ar-
chaeological research due to their ability to produce artifacts that shed
light on cultural affinity and chronology (Lyman et al., 1997; e.g.,
Claflin, 1931; Fairbanks, 1942; Ford and Willey, 1941; Jones et al.,
1933; Moore, 1894a, 1894b, 1899; Moorehead, 1891; Putnam, 1875;
Squire and Davis, 1848; Swallow, 1858; Wauchope, 1948; Willey,
1939). Over time, archaeological interest in mounds has grown to in-
clude studies of pre-contact technology, diet, social behavior, trade,
exchange, interaction, and settlement (e.g., Anderson, 2004; Caldwell,
1952; Calmes, 1967; Claassen, 1986, 1991, 2010; Crusoe and DePratter,
1976; Marquardt, 2010; Matteson, 1960; Russo, 2004, 2006; Thompson
et al., 2011; Trinkley, 1985).

Our knowledge of the distribution of mound features, however,
tends to be biased towards some areas more than others. These areas
may come from regions that have seen a greater number of field studies

(e.g., Michie's (1980) survey of the coastal plains of the Port Royal
Sound) but also include those that are easier to survey due to a lack of
substantial ground cover such as in areas of beaches and shallow in-
tertidal zones (South, 1960) as well as piedmonts and coastal plains
(House and Ballinger, 1976). Specifically, environments that are
dominated by heavy vegetation (e.g., woodlands, bayous, and coastal
marshes) are often missing from our knowledge of the record as they
are difficult to evaluate using systematic pedestrian tactics. The most
recent example of this lapse in knowledge is the discovery of thousands
of monumental complexes in the dense forests of Guatemala (Canuto
et al., 2018). Prior to the use of LiDAR survey, these archaeological
features were unknown, and their discovery may rewrite the history of
this area.

This aspect of past archaeological surveys raises the possibility that
our knowledge of the record is biased towards features that appear in
the best cleared and most visible landscapes (Banning et al., 2017;
Bintliff, 2000; Bintliff et al., 1999; Hirth, 1978; Nance, 1979; Stark and
Garraty, 2008). The potential for increasing our understanding of the
archaeological record is likely greatest in the exploration of areas that
have seen little systematic observation. Given that unknown deposits
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are often least visited and impacted, those that remain hidden in ve-
getation potentially hold some of the most promising opportunities for
new archaeological discovery. To address the challenges of large-scale
documentation presented by heavily-vegetated landscapes, and to aid
in the study of these poorly studied regions, new kinds of techniques are
required.

Remote sensing using computational algorithms for automatic fea-
ture detection offers one promising solution. High-resolution aerial
imagery provides detailed information about the structure of land-
scapes. Multispectral imagery expands the wavelengths that can be
used for sensing to include bands that are sensitive to vegetation and
sediment composition (Jensen, 2007). Active sensors, such as light
detecting and ranging (LiDAR), provide a mapping technique that
permits direct measurements of surface topography that is faster, more
systematic, and more accurate than other forms of manual mapping
(Chase et al., 2017; Evans et al., 2013). New computational methods
greatly facilitate the use of these many classes of data as they can be
configured to automatically identify features of interest (Freeland et al.,
2016; Magnini et al., 2016; Sevara et al., 2016; Trier et al., 2015).
Object-based image analysis (OBIA) covers a broad array of promising
algorithms for archaeological prospection (Sevara et al., 2016). These
compositional techniques include shape templates (Kvamme, 2013;
Trier et al., 2008), machine learning algorithms (Wu et al., 2015, 2016),
and image segmentation (Witharana et al., 2018).

Here, we evaluate an application of four OBIA methods – multi-
resolution segmentation, inverse depression analysis, template
matching, and a method combining segmentation and template
matching – as tools for identifying artificial mounds and rings. In our
example applications, we make use of LiDAR data from coastal South
Carolina. Our goal is to compare the results obtained by implementing
these methods on a single shared set of data. In this way, the results can
provide suggestions for the best practices in the use of these remote
sensing tools for documenting the archaeological record.

2. Study area

The coastal plains of South Carolina contain a rich archaeological
record but have been subjected to only limited ground surveys due to
the prominence of forests and bayous (Anderson et al., 2017). Beaufort
County, South Carolina, in particular, contains one of the largest
numbers of recognized archaeological deposits in the state, a significant
number of which are mound features (Frierson, 2000; Stephenson,
1971). A majority of the area, however, is densely vegetated and only
limited systematic surface surveys having been conducted (e.g., Michie,
1980; South, 1960, 1973).

The lack of systematic surveys in the region is more than an aca-
demic issue. By 2040, warming due to climate change will result in the
submergence of 30,000 acres of presently dry land in this area (NOAA,
2015; see also Anderson et al., 2017). The effects of sea-level change,
combined with recent urban development and population increases will
potentially result in the loss of many archaeological deposits before
they can be recognized. In this way, the application of new approaches
for rapid assessment of the otherwise hidden landscape of Beaufort
County is particularly urgent.

To evaluate the potential of new remote sensing approaches, we
chose three study areas in Beaufort County (Fig. 1). Areas 1 (Victoria
Bluff Heritage Preserve) and 2 (Pinckney Island Wildlife Refuge) consist
of a total of 25 km2 of forested land. Area 3 is composed of 3 km2 of
land on Hilton Head Island. These areas were chosen for evaluation
based on the presence of known features, public access, and the avail-
ability of high resolution remote sensing data.

2.1. Object-based image analysis (OBIA)

Aerial imagery has long provided archaeologists a source of in-
formation for studying archaeological features across landscapes in an

efficient and cost-effective fashion (e.g., Agache, 1968; Bradford, 1956;
Buettner-Januch, 1954; Campbell, 1981; Capper, 1907; Drager, 1983;
Engelbach, 1929; Harp, 1966; Lindbergh, 1929a, 1929b; Madry and
Crumley, 1990; McKinley, 1921; Parrington, 1983; Schaedel, 1951;
Williams-Hunt, 1950). While visible light cameras were the first sensors
used by archaeologists on aerial platforms, new instruments have ex-
panded the ability of researchers to remotely sense landscapes using
wavelengths across the electromagnetic spectrum. These new sensors
can be passive – as in the case of multispectral cameras – or active – as
in the case of light detecting and ranging (LiDAR) data.

LiDAR data are produced using a laser and sensor that records the
return speeds of pulses of light that are reflected off of distant surfaces.
LiDAR data often contain responses from multiple surfaces and can
therefore provide information about feature elevations that are other-
wise obscured by vegetative canopies. Consequently, LiDAR has proven
to be particularly useful for detecting architectural structures (Eskew,
2008; Freeland et al., 2016; Johnson and Ouimet, 2014; Krasinski et al.,
2016; Magnini et al., 2016; Prufer et al., 2015; Riley, 2009; Thompson
and Prufer, 2015; Trier and Pilø, 2012; Trier and Zortea, 2012). Similar
to the pioneering work in Guatemala (Canuto et al., 2018), there has
been over a decade of productive studies using LiDAR that have taken
place around the world (e.g., Inomata et al., 2018; Chase et al., 2014;
Evans et al., 2013; Johnson and Ouimet, 2018; Weishampel et al., 2011;
Witharana et al., 2018).

Two general classes of automated detection algorithms exist for
analyzing remote sensing data: pixel- and object-based approaches.
Pixel-based algorithms rely on spectral values encoded in raster data.
These approaches identify regions of data that match specific spectral
values associated with targets of interest. Object-based image algo-
rithms (OBIA), in contrast, use morphological characteristics such as
texture, shape, and size – in addition to spectral values – to divide
images into recognizable components with similar qualities. This fea-
ture of OBIA allows archaeologists to use attributes for identification
that are often distinctive of cultural forms: shape, size, and spatial or-
ganization. With this ability, research over the past 15 years has de-
monstrated the potential of OBIA to efficiently identify anthropogenic
structures from remote sensing data (e.g., De Laet et al., 2007; Larsen
et al., 2008; Riley, 2009; Trier et al., 2015; Sevara et al., 2016; also see
Davis, 2018 for a review of this literature).

2.2. Segmentation

Segmentation is a process that groups pixels into spectrally-similar
segments. Software algorithms can then characterize these segments in
terms of their geometric and textural properties. In the case of LiDAR
data, these objects represent distinct topographic land forms on the
ground. There are many forms of segmentation, but one of the most
common processes used by archaeologists is multiresolution segmen-
tation. Multiresolution segmentation adds to this process by iteratively
dividing data into segments based on additional morphological differ-
ences such as shape, size, and texture (Magnini et al., 2016). For this
reason, multiresolution segmentation provides greater ability to dis-
criminate features of interest than segmentation methods that rely on
just one set of criteria (Mao and Jain, 1992).

2.3. Inverse depression analysis

OBIA methods can focus on the use of hydrological depression al-
gorithms (Lindsay and Creed, 2006; Wu et al., 2015, 2016) to identify
archaeological mound features (Freeland et al., 2016). This process
requires the creation of an “inverse raster” in which a DEM is inverted
so that mounds are represented as depressions. Freeland et al. (2016)
has demonstrated this method in a study of a landscape in Tonga, re-
vealing thousands of mounded features.

Stochastic depression analysis (SDA) is one algorithm that uses
Monte Carlo simulation to map topographic depressions by evaluating
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morphological uncertainty (Lindsay and Creed, 2006). The method
works by estimating the likelihood that a given area contains an ele-
vation change based on variability in topography. The benefit of SDA is
that it highlights small elevation changes due to its sensitivity to to-
pographic differences in elevation data. Here, we utilize an inversed
version of SDA to identify mounded features in South Carolina. We
initially process LiDAR data following Freeland et al. (2016) by creating
an inversed DEM. We then apply an SDA algorithm and classify the
results using morphological parameters such as compactness and
mound size. This approach allows us to co-opt algorithms traditionally
reserved for hydrological modeling for the detection of archaeological
deposits.

2.4. Template matching

OBIA methods that employ template matching (TM) use statistical
probabilities generated from aggregated examples of features that are
characterized by pattern, texture, and shape. These probabilities form
templates that are systematically and statistically used as comparisons
to sub-sections of image data. Matches with templates are determined
by identifying patterns in data that fall within specified statistical limits
established by the template.

The archaeological utility of template matching is well-demon-
strated (e.g., Kvamme, 2013; Schneider et al., 2015; Trier et al., 2008,
2015; Trier and Zortea, 2012; Trier and Pilø, 2012). One problem with
template matching based approaches, however, is its tendency to pro-
duce false positive and negative results. Reducing false positives

Fig. 1. Study area in Beaufort County, SC (Color online).
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requires careful construction of templates that narrowly define an-
thropogenic features. However, this step comes at the expense of an
increased number of false negatives. The advantage of template
matching, however, is that the statistical classifiers provide confidence
intervals for detected objects, allowing one to quantitatively assess
degrees of matching.

3. Materials and methods

In our evaluation of OBIA approaches for detecting mound features
in heavily forested regions, we analyzed the same set of LiDAR data for
each of the three study areas. These data come from the National
Oceanic and Atmospheric Administration (NOAA)1 and were created to
plan for flood control and monitor coastal erosion. The raw data are
available as processed Digital Elevation Models (DEMs) that have a
spatial resolution of 1.2 m, a resolution suitable for architecture-scaled
feature analysis (see Beck et al., 2007). Using these data, we conducted
analyses using (1) multiresolution segmentation, (2) Inverse Depression
Analysis (IDA), (3) Template matching (TM), and (4) a combined seg-
mentation and TM approach. All of our analyses were conducted using
a combination of eCognition (Trimble, 2016), WhiteBox GAT (Lindsay,
2016) and ArcGIS (ESRI, 2017).

3.1. Multiresolution segmentation analysis

Following Magnini et al. (2016), we utilized a multiresolution seg-
mentation process and selected segments of the LiDAR data that met
circularity, asymmetry and compactness criteria stipulated by our
summary of known features for the study area (Table 1). Asymmetry is
particularly effective for isolating archaeological features, as it is gen-
erally low in anthropogenic structures and high in naturally occurring
landforms (Kvamme, 2013:55).

To minimize false positive identifications, we compared the location
of potential features with United States Geological Survey (USGS) land-
use maps2 and roadway shapefiles produced by the South Carolina
Department of Transportation (DOT).3 We eliminated those locations
that appeared on “developed” or “disturbed” areas and within 10m of a
roadway.4 Next, we created a raster that represented the differences
between local elevation and maximum neighborhood values calculated
as focal statistics. Focal statistics help to highlight local elevation
changes that would signify a mound feature. We then restricted our
results to those features have a local positive elevation difference of half
a meter or greater. Based on a review of known features in the area,
topographic rises that are less than half-a-meter of relief are rarely as-
sociated with anthropogenic mounds or rings (Russo, 2006). Our pro-
cess resulted in the identification of 2490 potential features. Among
these detections was a previously undocumented shell ring and earthen
mound.

3.2. Inverse stochastic depression analysis (IDA)

Here, we followed a strategy developed by Freeland et al. (2016)
who demonstrated that depression analysis combined with morpho-
metric criteria (size, shape, area, elevation and neighborhood) is ef-
fective in isolating mound structures. We created an inverse DEM using
the equation

= − × − +Inverse r Z Z(( ) ( 1))max min

where r=DEM raster, Zmax=maximum elevation, and
Zmin=minimum elevation. The results of the SDA analyses depend on
the number of iterations that are used to process the data. In each
iteration the assumption for topographic uncertainty is changed slightly
to produce slightly different outcomes, and as the number of iterations
increases, the algorithm produces more refined and consistent results.
Using the SDA tool in Whitebox GAT (Lindsay, 2016) we compared the
results of our analyses using 100, 200, and 300 iterations.5 We filtered
the result by then selecting only those features that were> 15m
and<250m in diameter, the range known for rings and mounds in the
region (Gibson, 1994; Russo, 2006; Walker, 2016). Finally, we excluded
features that appeared on USGS land-use maps in areas that were de-
signated as “disturbed”, “developed”, or “open water”, and those that
were within 10m of a roadway and 20m of a major highway. This
process produced 5422 potential features.

3.3. Template matching (TM)

In our evaluation of template matching we followed steps in Fig. 2.
We created templates using a selection of 29 mound and ring features
using characteristics of elevation, slope, focal statistics, and openness.
Slope has been shown to be one of the most effective methods for
identifying mound features as it shows a strong contrast between flat
and uneven surfaces, highlighting the outlines of mounds (e.g., Larsen
et al., 2017; Podobnikar, 2012; Prufer et al., 2015; Riley, 2009;
Thompson and Prufer, 2015). We used focal statistics to highlight major
changes in elevation that suggest the presence of topographic anoma-
lies, similarly to the processes mentioned above. Openness is a para-
meter that measures “topographic dominance” of landforms (Yokoyama
et al., 2002) and provides shade-free visualization for smaller topo-
graphic anomalies.6 Openness comes in two forms: positive and nega-
tive. Positive openness measures the degree of concavity and negative
openness measures the degree of convexity of a feature on a landscape.

To create the templates, we used a sample of six known mound
features that are recorded in the South Carolina Archaeological
Archives and 23 suspected features that were identified manually using
existing LiDAR data. These examples served as the basis for setting the
statistical limits for each of our templates.7 Our use of multiple classes
of data (elevation, slope, openness, and focal statistics) to create tem-
plates enables us to compare results using different characteristics.
Following this process, we created 15 templates.8

We also created 20 negative templates to represent those features
that are topographically distinct but are not pre-contact mounds.
Recent land disturbance, for example, might produce topographic fea-
tures that could be confused as a prehistoric mound. To create these

Table 1
Parameters used in multiresolution segmentation
of the Beaufort County LiDAR data.

Parameter Threshold

Area ≤150m2

Circularity ≥ 0.6
Asymmetry 0–0.3
Compactness ≥ 1.0

1 https://coast.noaa.gov/digitalcoast/data/coastallidar
2 Downloaded from the South Carolina Department of Natural Resources

website (http://www.dnr.sc.gov)
3 Downloaded from http://www.gis.sc.gov/
4 We chose the buffer sizes based on standard road widths in the U.S.: 4 m for

single lane roads, 8 m for two-lane, and 16m for 4-lane highways. For the
buffers, we used 2 additional meters to serve as a buffer from the edges of the
roads.

5 The number of iterations used for analysis impacts the amount of time re-
quired and depends on the processing capabilities of the computers used for
data processing. Using 100 iterations for the analysis of our study areas re-
quired 36 h. 1000 iterations would have taken at least a month of processing.

6 We calculated topographic openness using SAGA (Conrad et al., 2015)
7 The templates are available from the Open Repository at Binghamton

University (https://orb.binghamton.edu/anthro_data/3)
8We used the Template Editor tool in eCognition to create all of the templates
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negative templates, we used 393 topographically distinct features that
are not archaeological in their origin (e.g., linear contemporary fea-
tures, building imprints, and river boundaries).

Once created, we used eCognition to apply the templates to the
LiDAR data. This step produced over 10,000 potential identifications.
Like the other two algorithms, we eliminated results that fell on land
identified by USGS land-use maps as “developed” or “disturbed”, those
that were located within waterbodies, and those that fell within 10m of
roadways and 20m of major highways. We also rejected all results that
the algorithm calculated as at least 75% likely to be a false positive
based on their similarity to our negative templates. The final results
included only those detections that were calculated by the algorithm to
be at least 60% “most statistically likely.” The final template matching
process produced 10 potential features.

3.4. Combined TM and segmentation method

In order to evaluate the degree to which the strengths of each OBIA
method can be combined to produce superior results, we also developed
a multidimensional algorithm that includes segmentation and template
matching steps (see Davis et al., 2018). This algorithm begins with
template matching to create correlation-coefficient maps of potential
features. Then, we used multiresolution segmentation on these results.
We subsequently isolated those features that had a local elevation dif-
ference of between 0.5 and 5m from the surrounding area (Russo,
2006). We calculated neighborhood changes in elevation using the focal
statistics tool (shape= circle, height and width= 5) in ArcMap 10.5
(ESRI, 2017). We rejected all results that occur on developed land, that
are located in areas close to roadways, and that have slopes that are less
than five or> 50°.

Next, we superimposed the remaining results with the correlation
rasters that we produced during the template matching process. As the
templates are used to iteratively scan sections of the LiDAR data, each
section examined is assigned a positive and negative correlation coef-
ficient value that corresponds to the overall match of a location to the
positive and negative templates. We used the negative correlation raster
to eliminate results that were identified as at least 75% likely to be false
positives. Lastly, we created a new raster by subtracting the negative
correlation coefficient from the positive correlation coefficient. Areas of
this raster containing negative values indicate strong likelihoods of
false identifications, as they closely correlate with non-mound features
in the negative template. As such, we rejected any results that overlap a
portion of this raster containing negative values. This process left 10
potential features.

3.5. Ground survey

Following our OBIA analyses, we chose 22 locations to visit on the
ground to evaluate the degree to which the algorithmic detection cor-
rectly identified anthropogenic features (Fig. 3). All of these features
are located on public land and were accessible for pedestrian survey.

4. Results

The results of each OBIA analysis shows that there are distinct dif-
ferences in the yield of potential features depending on the approach
used (Tables 2 and 3). Areas 1 and 2 (see Fig. 1) provide useful

environments within which to test each OBIA method. Within Area 2,
the combined method did not identify any features, indicating that it
cannot identify midden structures effectively, as many archaeological
middens are present on Pinckney Island (Charles, 1984; Kanaski, 1997;
Trinkley, 1981). Area 3 (Fig. 1) encompasses publicly available land on
Hilton Head Island, some of which is highly developed. The number of
features identified is substantial given its small size (~3 km2) and in-
dicates a high level of false positive identifications in developed loca-
tions. The template matching and combined approaches only identify a
handful of potential sites, suggesting their capability of reducing false
identifications.

The segmentation approach was particularly effective in identifying
mounds, yet also produced many results that are likely false positives
(Fig. 4). Using shapefiles provided by the South Carolina SHPO, we
determined that 384 detections made by segmentation are located on
84 previously surveyed archaeological sites on Pinckney Island (Sup-
plemental Table 1). Significantly, the segmentation analysis identified a
new mound feature that is previously unrecorded (this feature was also
identified by TM and IDA but was missed by the combined method).

IDA proved successful in identifying pre-contact mounds, including
shell rings (Fig. 5). Nonetheless, a common issue with this method is the
plethora of false positive results that occur due to natural topographic
changes. Some of the limitations of IDA in feature detection, however,
are likely due to resolution limits of the LiDAR DEM that we used, and
the number of iterations performed on the analysis. Using higher-re-
solution LiDAR as well as greater processing hardware may improve the
relative effectiveness of IDA in detecting features.

To evaluate the degree to which the amount of processing can im-
prove our results, we conducted our IDA analyses with 200, and 300
iterations. In all instances, the increase in iterations correlates with an
improvement in archaeological feature detection (Tables 4 and 5). In all
three study areas, false positive results identified using 100 iterations
and surveyed were not reidentified using 300 iterations (Table 5).

Looking at Area 2 (Pinckney Island), we compared identified results
to known archaeological sites in this area in order to gauge the accuracy
of IDA in identifying previously detected archaeological deposits
(Table 4; also see Supplemental Table 1). We chose this area because of
its history of extensive archaeological surveys. In addition to increased
iterations, it is possible that with higher resolution DEMs better dis-
crimination of topographic features can be obtained (Vaze et al., 2010).

In contrast to segmentation and IDA, template matching only iden-
tified features that were anthropogenic in origin, though the method
missed a shell-ring that was located by segmentation (Fig. 6). Finally,
our combined approach that includes template matching and segmen-
tation improved on all of these results by retaining only the positively
identified features (see Fig. 7).

4.1. Method results and comparisons

Study Area 3 proved to be problematic for the detection of ar-
chaeological deposits due to the extensive recent land disturbance ac-
tivity. In general, any use of automated techniques such as OBIA is
going to be hampered in areas that have been subject to development.
One can expect considerably more manual labor will be required to
filter false positives from total results. The combined approach, how-
ever, was the most effective in these conditions and did not falsely
identify the hundreds of features that were identified by the other

Create DEM from 
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sets based off 

DEM
• Topographic 
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• Slope
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Create 
templates 
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rasters
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matching 

algorithm in 
eCognition and 
cross reference 
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algorithm 
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Fig. 2. Steps involved in the use of template matching for the identification of mound features.
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methods (Fig. 7). This result further emphasizes the benefits of using a
combined approach for archaeological prospection.

Numerically, segmentation and IDA were the most successful OBIA
methods for identifying mounded features, as they detected the most
archaeological sites compared to the other methods (Table 2). They
yield, however, the highest number of false positives. Using a greater
number of iterations appears to alleviate this issue and makes IDA far
more successful than a pure segmentation procedure. The use of tem-
plate matching produced no false positives related to natural phe-
nomena but failed to discriminate between prehistoric and historic
features. Our new combined approach that includes template matching
and segmentation provided the greatest consistency in correctly iden-
tifying archaeological features (also see Davis et al., 2018) (Table 6).

Fig. 3. Features evaluated during ground surveys. The inset provides detail of an area of Study Area 2 (marked by the black box) where a number of features were
found in close proximity (Color online).

Table 2
Total detections made by each OBIA technique.

OBIA method Total detections
study area 1

Total detections
study area 2

Total detections
study area 3

Segmentation 1399 1091 380
IDA (100 iterations) 3332 1677 413
IDA (200 iterations) 1582 1829 807
IDA (300 iterations) 1093 2485 817
Template Matching 6 3 3
Combined 7 0 3
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5. Discussion and conclusion

While each OBIA method that we evaluated yields positive identi-
fications, our results show that a combination of approaches produces
the most reliable information for archaeological prospection. Of course,
some of the differences we note in our analyses depend on the quality of
the data we used: the effectiveness of methods depends to some degree
on the resolution and quality of the data. The difference between seg-
mentation and IDA in our study of Beaufort County, for example, was

likely due to the limits of the resolution of our LiDAR data. Improved
resolution of the LiDAR data will address the deficiency observed in this
study. By tripling the number of iterations, IDA yielded more accurate
results than segmentation, as opposed to slightly less accurate results
using only 100 iterations. The processing requirements, however, make
IDA less useful for large-scale landscape studies, as the amount of
computing power required makes the process extremely time con-
suming.

The results here are promising but it should be noted that a single

Table 3
OBIA method results from field survey.

OBIA method Sites
surveyed

Accurate identifications
determined by field survey

False positives
determined by field
survey

Rate of positive identification/
false positives based on field
survey

Total detections in
study areas

Potential new
mound features

Segmentation Classification 12 6 6a 1:1 2490 1245
IDA (100 iterations) 14 5 9b 5:9 5422 3012
TM 6 3 3 1:1 10 5
Combined (segmentation

and TM)
4 4 0 1:0 10 10

a Two sites were inconclusive.
b One site was inconclusive.

Fig. 4. Segmentation results. A: Study Area 1 results. The majority of the identifications are false positives caused by natural phenomena. B: Study Area 2 results. C:
Study Area 3 results. The majority of identifications are explained as natural levee features that line the bayous. Several other identifications in this scene are housing
footprints or other recent landscape disturbances. Highly developed areas tend to show numerous false positive results (Color online).
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universal algorithm is unlikely to be developed. In the case of OBIA, the
analyst must always establish the definition for classes of objects to be
identified in advance. These definitions must be based on specific hy-
potheses about the necessary and sufficient conditions needed for the

algorithm to identify a feature of interest. The parameters for these
conditions can be derived using regionally-specific parameters, but
doing so means that the conditions will be contingency-bound gen-
eralizations and will be incapable of detecting previously unknown
features with morphologies other than those described in reference
samples. For this reason, analyses must be repeated by varying the
parameters to test new hypotheses and as new knowledge of the local
archaeological is developed.

Ultimately, the identification of new aspects of the archaeological
record in the American Southeast will permit for researchers to re-
evaluate our current notions about pre-contact settlement patterns, as
well as the significance of features like shell rings. The shell ring
identified by this study (also see Davis et al., 2018) is significantly
smaller than most known shell rings in this area. The methods and

Fig. 5. Results of IDA analysis using 300 iterations. A: Study Area 1 results. In addition to several mounds, IDA also identified a new shell ring site in this area. B:
Study Area 2 results. C: Study Area 3 results. Many results in all areas are the result of natural topographic changes and/or modern disturbance (Color online).

Table 4
Change in detection accuracy for known archaeological deposits in Area 2 using
increasing numbers of iterations. As the number of iterations increases, so too
does the number of identified archaeological deposits.

Number of iterations Number of identified archaeological deposits

100 40
200 59
300 60

Table 5
Overall accuracy for IDA using increasing numbers of iterations. As the number of iterations increases, the number of false positive detections decreases, and the
overall accuracy increases.

Number of iterations True positive identifications (determined by ground-
survey)

False positive identifications (determined by ground-
survey)

Total detections Overall accuracy

100 5 9 5422 35.71%
200 3 3 4218 50.00%
300 5 2 4395 71.43%
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Fig. 6. Results of the template matching algorithm
on the three study areas. A: Study Area 1 results. The
algorithm failed to identify the shell ring site (in-
dicated by arrow). B: Study Area 2 results. All iden-
tified locations are anthropogenic. Two of the three
have archaeological contexts. C: Study Area 3 re-
sults. Two of the three features were surveyed and
were both anthropogenic. Neither one was archae-
ological in context. White areas represent water and
coastline (Color online).

Fig. 7. Results of the combined segmentation and template matching algorithm. A: Study Area 1 results. B: Study Area 3 results. In comparison to the segmentation
and IDA methods (see Figs. 4 and 5) the combined method provides fewer false positives (Color online).
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datasets used here permit for the detection of features as small as a few
meters across and about half-a-meter tall. The average diameter of
known ring plazas in South Carolina is 32m (Russo, 2006:25). The ring
discovered here has a plaza diameter of approximately 16m, half that
of the size of known rings. Additionally, the maximum diameter of the
ring is only 36m. Compared to the average in South Carolina of 64m
(Russo, 2006:25), this ring is considerably smaller than those pre-
viously studied. As such, new discoveries may reveal new information
about the range of feature structure and composition, challenging
previous notions of prehistoric activity (e.g., Russo, 2004; Saunders,
2004; Trinkley, 1985).

This substantial difference in size of this new ring feature compared
to previously surveyed rings in this area also speaks to a bias in ar-
chaeological knowledge towards monumental structures compared to
smaller ones. This requires high resolution datasets, as the higher the
spatial resolution, the smaller the objects that are detectable. A future
avenue of research must focus on the potential for remote sensing
surveys in alleviating human error in traditional surveying, where
visibility becomes a considerable issue in detection in heavily vegetated
environments (Hirth, 1978; Nance, 1979; Schiffer et al., 1978).

The results of our new approach show several new features that
were undetected by previous manual surveys (see Davis et al., 2018).
These features include previously unrecorded deposits such the new
shell ring in Study Area 1 and a pre-contact mound in Study Area 2. As
such, the use of automated methods is successful in picking out features
that manual approaches overlook, and ensures full, systematic coverage
of areas being surveyed. Nevertheless, it should be stressed that manual
evaluation is also an essential step in analyzing remote sensing data, as
it often provides the first step in building robust datasets that can be
used as training data for more complex automated methods.

Urbanization and climate related sea level changes pose imminent
threats to cultural resources in areas such as Beaufort County, but also
across the American Southeast. The use of remote sensing technologies
such as LiDAR and computational algorithms offer new means for ad-
dressing existing deficiencies in our knowledge of the archaeological
record. While no single algorithm offers a universal solution, the use of
LiDAR data and OBIA can yield accurate identifications of mound fea-
tures that lay under tree canopies and across large areas. While pre-
liminary, this study demonstrates the potential for OBIA and remote
sensing to greatly assist in archaeological landscape survey efforts.
Given the urgency to document our extant archaeological record before
it is lost, such an approach promises to greatly contribute to our
knowledge of the archaeological record.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.jasrep.2018.10.035.
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