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Abstract 
People on Madagascar have coped with environmental change for millennia. Present-day 

environmental change, however, is negatively impacting the livelihoods and sustainability 

of coastal communities on Madagascar. As a result of increasing climate-driven impacts 

on livelihoods and economic development initiatives, community settlement strategies are 

shifting towards increased sedentism. This dissertation investigates settlement patterns 

of mobile foraging populations, their drivers, and ecological effects in Late Holocene 

Madagascar. Specifically, I investigate environmental links to settlement patterns via 

remotely sensed environmental and archaeological data and radiocarbon chronology from 

identified archaeological deposits. While most studies of settlement distribution focus on 

socioecological drivers, in this project I also devote attention to the ecological legacy 

effects of human settlement by looking at the geochemical and spectral properties of 

archaeologically inhabited areas. In this way, this dissertation seeks a holistic 

understanding of settlement distribution in Southwest Madagascar extending from its 

driving forces to its long-lasting effects on ecological systems. Using a predictive modeling 

protocol rooted in ideal distribution models from human behavioral ecology, I use machine 

learning algorithms to extract culturally significant environmental variables from Sentinel-

2 satellite images. These data then aid in exploring the degree to which resource 

distribution is correlated with settlement density, whether Allee effects account for 

settlement patterns, and the resulting ecological impact of foraging activity on the 

Malagasy landscape over thousands of years. Identified cultural deposits are visited 

during ground investigations to survey and excavate different areas to acquire temporal 

information (e.g., 14C dates, ceramics, etc.). Based on this newly generated archaeological 

settlement record, these data are incorporated into spatial point process models (PPMs), 

a form of regression analysis, of archaeological settlements to investigate the relationship 

between environmental conditions and settlement distributions. PPMs help to reveal 

external ecological relationships as well as dispersive or cohesive properties between 

archaeological points. Finally, using an automated remote sensing procedure employing 

a combination of Sentinel-2 and PlanetScope imagery and random forest models, I 

quantify the extent of cultural niche construction resulting from foraging communities in 

the Velondriake Marine Protected Area in southwest Madagascar since the Late 

Holocene. Altogether, this dissertation demonstrates that foraging communities in Late 

Holocene Madagascar settled the landscape according to the principles of an ideal free 

distribution with Allee effects, meaning that a strong mix between environmental and social 

factors, including active landscape modification (or niche construction) drove settlement 

choice. Specifically, the presence of freshwater sources, community defense, and social 

cohesion were among the most significant drivers of settlement patterns, followed by 

marine resource access (i.e., coral reefs). Additionally, it appears that almost 20% of the 

Velondriake region has been anthropogenically modified, demonstrating that foraging 

communities leave quantifiable and long-lasting impacts on ecological systems. Over the 

last millennium, communities in the Velondriake region have maintained close social 

connections, which have shifted geographically over the last several hundred years. 

Settlements appear to reflect a variety of long-term and seasonal occupations that 

exploited a variety of marine habitats including coastal coral reefs, oceans, and mangrove 

forests. 
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Chapter 1: Introduction 

Climate change is one of the largest threats to human security and prosperity in 

the modern world, with the consequences increasing in their severity as time progresses. 

The U.N. Intergovernmental Panel on Climate Change (IPCC) recently released an 

extensive report on the state of the world and its risk from climate related disasters. Among 

its many impacts, the climate crisis and subsequent environmental instability are resulting 

in a major increase of highly vulnerable populations throughout much of the world (IPCC 

2022). However, the exact impact of climate and environmental instability on human 

mobility is a complex issue that has resulted in inconsistencies between different 

estimates of its actual role in human migratory strategies (Heslin et al. 2019; IPCC 2022). 

Archaeology can offer an important means by which to understand long-term 

consequences of the impact of climatic and environmental instability on human settlement 

and mobility (Altschul et al. 2017, 2020; Kintigh et al. 2014). 

Madagascar presents one exceptional case study to address these issues, as the 

island has a human history of at least 2400 years and exemplifies hypervariable climatic 

conditions throughout this same period (Dewar and Richard 2007a; Douglass, Hixon, et 

al. 2019). However, large tracts of the Malagasy landscape require intensive 

archaeological investigation (Davis et al. 2020). Island archaeology, especially on 

Madagascar, has largely focused on “first contact” events and subsequent environmental 

change  (e.g., Anderson et al. 2018; Hansford et al. 2018; Mitchell 2019; Vérin et al. 1969; 

exceptions include Deschamps 1959). Research on Madagascar has revealed that such 

studies, while important for establishing migration chronologies, do little to advance 

understanding about post-arrival mobility and settlement patterns (Douglass, Walz, et al. 

2019; Douglass and Zinke 2015). The hyper-focus on the “first” or “earliest” inhabitants of 

the island have resulted in primarily “site-based” archaeological investigations that lack 
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regional contexts for later periods of human occupation (e.g., Dewar et al. 2013; Gommery 

et al. 2011; Hansford et al. 2018; Heurtebize and Vérin 1974; Vérin 1971). 

While “site-based” studies have provided invaluable information pertaining to the 

evolution of state formation on Madagascar and chronological data over the past 

millennium, such work has fallen short when evaluating post-arrival mobility and 

settlement strategies at regional scales (Douglass and Zinke 2015). By pushing away from 

“site-based” archaeological research towards the evaluation of the archaeological record 

as a complex system with multiple scalar contexts, we will be better positioned to evaluate 

these phenomena and pressing questions surrounding human-environmental dynamics 

throughout the island’s history. Unlike site-based investigations, a landscape approach 

permits for exploration into the interconnections between human populations and their 

surroundings at multiple scales and changes in behavior over time and space (Anschuetz 

et al. 2001; Green and Petrie 2018). 

Additional scales of analysis are particularly important for understanding human-

environmental dynamics (An 2012; Davis 2020a; Elsawah et al. 2020; Lansing 2003), and 

are essential for capturing the wide-range of interconnected variables and scales of 

interaction at play between human and environmental systems. On Madagascar, where 

coastal communities are at increased risk from environmental change (Harris 2011; Le 

Manach et al. 2012), advancing understanding of how humans and environments interact 

is vital for conservation efforts and environmental policy development.  

As such, the purpose of this dissertation is to highlight internal settlement and 

mobility patterns, their drivers, and long-term impacts, throughout the southwest of 

Madagascar via a multiproxy landscape-scale analysis. By studying archaeological 

settlement patterns using a variety of data (e.g., geophysical, geochemical, 



3 

 

archaeological, and environmental) at different scales, we can help uncover links between 

human mobility and environmental conditions, which in turn can contribute to mitigation 

planning for extreme climate events today.  Environmental change is increasingly affecting 

modern coastal communities on Madagascar (IDMC 2020, 2021) and understanding these 

drivers over time can assist in developing contemporary environmental policies. 

The Importance of Landscape and Regional Contexts 

A crucial epistemological question among archaeologists has been the use of 

“sites” as analytical units (e.g., Caraher et al. 2006; Dunnell 1992; Dunnell and Dancey 

1983; McCoy 2020). Opponents of the “site” concept point to its imprecision (i.e., what 

exactly constitutes a site?) and its disjointed connection with reality (i.e., sites do not exist, 

they are merely a classificatory tool). However, the “site” is a long-engrained concept and 

it can be difficult to look at the archaeological record through different lenses. Nonetheless, 

alternative archaeological frameworks have sought to diminish the utility of “sites”. Among 

the most noteworthy are “siteless” surveys (Dunnell and Dancey 1983)—wherein regional 

surveys constantly re-define units of measurement based on repeated investigation and 

analysis of clustering patterns; landscape archaeology—where researchers describe the 

archaeological record as a connected system, rather than individual “sites” (Anschuetz et 

al. 2001); and even viewing the archaeological record in atemporal terms (Bailey 1981, 

2008)—where it is seen as a palimpsest without discrete components like “sites”.  

Despite the obvious flaws with defined empiricist classes like “sites”, this concept 

also runs antithetical to Malagasy ontologies. Specifically, the notion of an archaeological 

or cultural “site” opposes the Malagasy notion of Fomba Gasy, or the view that people and 

their landscapes are dynamic, interlaced components that “root” people within a particular 

area (Evers and Seagle 2012). Rather than seeing specific isolated “sites” of cultural 

significance, it is the landscape, as a whole, that is deeply associated with traditions and 
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histories. As such, cultural places are not tangible objects that can always be detected 

and quantified as “sites” of importance. This runs counter to how most archaeological 

projects are organized. Thus, the adoption of a landscape or atemporal archaeology that 

moves past the “site” concept will not only improve archaeological research in a theoretical 

sense, but will also better align with Malagasy ontological systems, thereby improving 

archaeological interpretations on Madagascar.  

Landscape analysis requires interdisciplinary integration, often combining 

frameworks from geography, anthropology, climatology, and demography, among others, 

to holistically investigate how people lived within a region over time (e.g., Anschuetz et al. 

2001; Ingold 1993; Tilley 1994). Landscape archaeology can provide insight about human-

environmental dynamics and is well suited to address archaeological questions on 

Madagascar centered around extinction events, migration, and anthropogenic effects on 

ecological systems. Globally, archaeological studies of settlement-behavior and its 

relationship to environmental variables are abundant (see Davis 2020), and yet 

Madagascar has very few such archaeological studies (exceptions include Wright 2007; 

Griffin 2009; Parker Pearson et al. 2010), especially those pertaining to its earliest human 

inhabitants (Battistini and Verin 1972; Davis, DiNapoli, and Douglass 2020; Douglass 

2017; Douglass et al. 2018). This is partly because landscape approaches require 

geographically expansive datasets, as mentioned earlier, but also stems from the fact that 

large tracts of Madagascar’s landscape have seen less intense investigation than others, 

leaving extremely thorough data in some regions, and less so in others.  

Landscape studies of ancient Malagasy populations generally focus on time 

periods after 1000-1100 B.P. when settlements increase in size and number (Parker 

Pearson et al. 2010). Researchers now know that humans were present on Madagascar 

prior to 1100 B.P., possibly extending back several thousand years (Dewar et al. 2013), 
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although this timeframe is widely debated (e.g., Anderson et al. 2018; Hansford et al. 

2018, 2020; Mitchell 2019, 2020). Nonetheless, recent radiocarbon evidence suggests 

that the earliest recorded communities were likely migrating from areas within Madagascar 

(Dewar et al. 2013; Douglass, Hixon, et al. 2019; Hansford et al. 2018; Parker Pearson et 

al. 2010). For these earliest archaeological periods, however, landscape level analysis is 

lacking. 

The Velondriake Marine Protected Area and Collaborative Archaeology 

The southwest of Madagascar contains a rich, but highly threatened and vastly 

unexplored archaeological record. Some of the earliest evidence of human occupation 

has been found in this region (Douglass, Hixon, et al. 2019; Hansford et al. 2018), and 

highly variable climatic conditions have been associated with the appearance of widely 

diverse cultural practices among the people who live here (Douglass 2017; Radimilahy 

2011; Yount et al. 2001). 

This dissertation project focuses on the region containing and directly surrounding 

the Velondriake Marine Protected Area (VMPA). The VMPA resides in the southwest coast 

of Madagascar between the cities of Toliara and Morombe (Figure 1-2). It encompasses 

a marine and coastal region of approximately 800 km2 and is home to over 10,000 people 

(Harris 2007). Velondriake, which translates roughly as “to live with the sea”, is home to 

Vezo people, fishing communities linked to maritime lifeways (Koechlin 1975; Langley 

2006). Vezo actually means “to paddle”, which emphasizes their connection with marine 

environments (Astuti 1995). The Velondriake area is home to extensive coral reef habitats, 

mangrove forests, seagrass beds, and threatened terrestrial species like baobab trees 

and spiny forests. The formation of the VMPA was borne out of the Velondriake 

Association, a group of 23 different villages (initially—the number of members has since 

grown) with a common goal of preserving and conserving marine resources in this area 
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(Cripps and Harris 2009). This study centers around the village of Andavadoake, which is 

one of the largest member villages within the VMPA. 

 

 

Figure 1-1: Map of the Velondriake Marine Protected Area, Southwest Madagascar. 

The archaeology of the VMPA is a recent development, with the first 

comprehensive investigation of the area starting in 2011 by Douglass (2016). Douglass’ 

work focuses on the excavation of six different areas around the modern village of 
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Andavadoake, where she describes several open air and rock shelter sites occupied 

between 3000 B.P. and the present (Douglass 2016, 2017; Douglass et al. 2019). Her 

work presents a more targeted analysis, however, of contexts dated between 1400 – 100 

BP (Douglass et al. 2018). The region appears to have an extensive history of marine 

resource exploitation by human inhabitants, including resource acquisition in a range of 

habitats extending from coral reefs, mangroves, and intertidal zones (Davis, DiNapoli, and 

Douglass 2020; Douglass 2017). As this dissertation project will highlight, the settlement 

system in this region was shaped by environmental and sociopolitical resources and a 

closely connected social network of permanent and semipermanent communities 

(Chapter 4; Chapter 7). This dissertation also aims to acquire a better understanding of 

the chronology of human occupation of the VMPA using a landscape approach.  

Andavadoake is the largest village within the VMPA and serves as the basecamp 

for the Morombe Archaeological Project (MAP), which is a collaborative community 

archaeology team established by Kristina Douglass in 2011 (Douglass 2016; Douglass, 

Morales, et al. 2019). Within this dissertation, I worked closely with the MAP team to 

develop research questions, plan and execute fieldwork operations, and output the results 

in the form of presentations, workshops, and publications. The goal of MAP is to develop 

a fully collaborative archaeology that seeks to include local communities at every stage of 

the scientific process from project formation through publication (Douglass, Morales, et al. 

2019). This dissertation was made possible because of this inclusivity, and everything that 

follows took place in direct and consistent collaboration with local archaeologists in MAP. 

A New Theoretical Approach for Settlement Archaeology 

It is common within studies of archaeological settlement patterns to investigate 

these phenomena as they relate to environmental or ecological variables (see Kowalewski 

2008). A multitude of studies framed around human behavioral ecology (HBE) modeling 
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have demonstrated the importance of environmental resources and ecological variables 

in human settlement choice (e.g., Codding and Jones 2013; Hanna and Giovas 2019; 

Jazwa and Collins-Elliott 2021; Winterhalder et al. 2010). However, all too often, studies 

that prioritize environmental drivers can overlook social influences on behavior, which in 

turn can result in an incomplete understanding of demographics related both to settlement 

choice and the subsequent effects of these actions. 

Likewise, for the purposes of modeling settlement distributions, predicting the 

locations of archaeological deposits, and creating systematic inventories of cultural 

materials, archaeologists often rely on these environmentally focused frameworks that 

look primarily at drivers (or “push” and “pull” factors, sensu Lee 1966) of settlement 

distribution. However, it is equally important to understand the long-term effects of 

settlement on a landscape, and such effects can subsequently be used to predict and 

prospect for archaeological materials. 

In this dissertation, I put forth a multiproxy approach to settlement archaeology that 

seeks to investigate human settlement strategies from the perspective of feedback-loops 

and multiple lines of evidence (Figure 1-3). In so doing, this framework aims to balance 

drivers of settlement and mobility along with their resulting impacts on the involved 

socioecological systems. Such an approach requires multidisciplinary collaboration as it 

involves the use of multiple lines of evidence and methodological approaches to 

investigate different, but interrelated aspects of the archaeological record.  

For example, within this dissertation, remote sensing can be used to record 

important environmental information and geophysical signatures of human activity, which 

in turn can directly answer questions concerning niche construction and human impact on 

ecological systems. When paired with spatial statistics, we can utilize remotely sensed 
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information to assess potential drivers of settlement and mobility, and both of these 

approaches can subsequently aid in archaeological survey and excavation efforts, as new 

cultural heritage sites can be identified. Spatial modeling also adds an ability to indirectly 

assess social factors that affect population distributions and can indicate patterns of social 

cohesion and dispersion between communities or individuals across a landscape. 

Archaeological evidence from excavations (e.g., ceramics, charcoal, etc.) can provide 

additional temporal information that then allows us to take all the aforementioned analyses 

to another level by tracking changes in these relationships over time. As such, the 

multiproxy approach presented here allows researchers to understand settlement patterns 

as a feedback loop between behavioral choice, subsequent (un)anticipated effects, and 

long-term patterns of ecological transformation. While individual studies and methods can 

address questions targeting specific facets of this phenomenon, they do not provide a 

cohesive explanation of the archaeological record.   
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Figure 1-2: Approach to understanding archaeological settlement and mobility patterns 
used in this dissertation. Grey and Blue circles show two different socioeconomic systems, 
which each have their own set of socioeconomic feedbacks. The two systems also interact 
with one another as part of a larger, regional system, the spans a greater amount of 
geographic space. In addition, these interactions are not static, but also must be observed 
through a temporal lens that will subsequently change through time. Such an approach 
requires the integration of multiple lines of evidence provided by a myriad of approaches 
(indicated by symbols along x and y axis (e.g., geophysical, geochemical, archaeological, 
etc.). 

Research Questions and Hypotheses 

Using the approach outlined above, this dissertation seeks to address socioecological 

dynamics of settlement and mobility patterns among coastal foraging communities in the 

VMPA. Specifically, this study dissects the problem into four major questions: 1. To what 

degree was resource distribution correlated with settlement density in Late Holocene SW 

Madagascar? 2. What role do social ties to place and community defense play in 

settlement locations? 3. How do social networks shift over time with respect to climatic 

and sociopolitical events? And 4. Do ecological legacies of landscape modification exist 

in SW Madagascar and can these niche constructing activities aid in detecting ancient 

settlement locations and/or provide insight into the extent of anthropogenic activity across 

the Malagasy landscape? To address these questions, I turn to a suite of geospatial (i.e., 

spatial statistical modeling, remote sensing, network analysis, machine learning), 

archaeological (i.e., survey, excavation), and geochemical (i.e., radiocarbon isotope 

analysis) methods. 

Summary/Conclusion 

This dissertation develops a conceptual model for multiproxy geospatial landscape 

analysis. This framework allows for a comprehensive investigation of settlement 

distributions and their relationship with socioenvironmental conditions and is applied to a 

case study in the VMPA in southwest Madagascar over the last millennium. The 
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dissertation itself is comprised of an iterative research approach, and each chapter builds 

upon the results of the next in order to address this topic from multiple viewpoints and 

using different data types. Remote sensing data are central to much of this dissertation, 

and in Chapters 2 and 3, I discuss the latest advances in remote sensing archaeology 

within African archaeology, in general, and the ethical considerations that are due when 

using this technology, particularly in cases of culturally sensitive landscapes which are 

present within Southwest Madagascar. Next, in Chapter’s 4 and 5, I outline the results of 

a set of predictive models rooted in human behavioral ecology (HBE) frameworks 

developed for locating archaeological deposits throughout the Velondriake study area. 

These models investigate settlement patterns as a function of environmental resource 

availability and social cohesion and serve both as prospection tools and means to explain 

the archaeological settlement patterns present in this area.  

In Chapter 6 I present an investigation of legacy ecological effects caused by cultural niche 

construction in the VMPA by foraging communities over the last millennium. This entails 

the utilization of high-resolution satellite imagery and machine learning algorithms which 

enable researchers to identify archaeological deposits based on vegetation and soil 

properties. This chapter builds upon the prior two chapters by investigating the long-term 

effects of settlement on the Malagasy landscape and demonstrates the presence of an 

extensive niche created by mobile foraging and herding communities.  

In Chapter 7 I present the results of a network analysis conducted using ceramic sherds 

recovered from field surveys over the past several years in the VMPA. This chapter 

provides additional insight into social cohesion and movement of people and ideas 

throughout the study region that is identified by spatial modeling in Chapter 5. In Chapter 

8, I detail the results of the excavations conducted as part of this dissertation project and 
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discuss settlement chronologies for the VMPA, including a series of 58 new radiocarbon 

dates from 5 archaeological units located throughout the Velondriake region.  

Finally, in Chapter 9, I summarize the most significant findings of this project and chart out 

the future research trajectories that will build from this dissertation. Together, this research 

provides a case study for how landscape archaeology focused on settlement patterns is 

enhanced by close community engagement and a holistic, multiproxy approach that 

considers settlement studies from a combination of methods that explore behavioral 

drivers and long-term impacts of human activities through time. 

 

 

  



13 

 

Chapter 2: A Review of Aerial and Spaceborne Remote Sensing in African 

Archaeology1 

Remote sensing instruments are powerful tools for producing relatively complete 

records of archaeological settlement patterns and human behavior at the landscape scale. 

Literature on aerial and spaceborne technologies (e.g., satellites, LiDAR, aerial 

photographs, etc.) in archaeology has demonstrated that multi- and hyper-spectral 

satellite sensors and aerial platforms such as LiDAR are particularly useful for tackling 

issues of survey coverage and site identification (Chase et al. 2012; Lasaponara and 

Masini 2012; Leisz 2013; Luo et al. 2019; Osicki and Sjogren 2005; Verhoeven 2017). 

Coupled with machine-learning algorithms, remote sensing offers an effective means to 

increase survey areas and the discovery of new cultural deposits (Bennett et al. 2014; 

Davis 2019; Davis, Lipo, et al. 2019; Trier et al. 2019). Specifically, the use of such 

technology allows researchers to: 1) investigate large geographic scales in a time efficient 

(and cost effective) manner; 2) access areas which are difficult to physically visit due to 

geography, lack of infrastructure, and/or political instability; and 3) achieve enhanced 

visibility for archaeological survey in environments with dense vegetation or otherwise 

challenging topography (e.g., LiDAR, SAR). The widespread use of such methods would 

allow Africanist archaeologists to investigate settlement distributional patterns and 

landscape use in multiple temporal contexts at extraordinary speeds, as case studies from 

other areas demonstrate (Bennett et al. 2014; Davis, Lipo, et al. 2019; Magnini and 

Bettineschi 2019). 

 
1 Davis, Dylan S., and Kristina Douglass. 2020. Aerial and Spaceborne Remote Sensing in 

African Archaeology: A Review of Current Research and Potential Future Avenues. African 

Archaeological Review 37(1): 9-24. DOI:10.1007/s10437-020-09373-y. 

 

https://doi.org/10.1007/s10437-020-09373-y
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In this paper, we review landscape-scale remote sensing archaeological research 

conducted throughout the African continent, focusing primarily on the last two decades 

(Figure 2-1) and how these methods can benefit archaeological research in the face of 

unprecedented climatic shifts and threats to cultural heritage. Specifically, we look at 

approaches utilizing aerial and spaceborne remote sensing instruments and avenues of 

research that are yet to be fully utilized in this region. We offer several explanations for 

why remote sensing has been slow to break into the mainstream of Africanist archaeology. 

Then, we present examples from Africanist research that illustrate why these methods are 

essential for protecting and recording the archaeological record in the face of climate 

change and human impacts. 

On the African continent, aerial and spaceborne remote sensing approaches have 

been widely applied, largely utilizing black-and-white aerial photographs to study state 

formation (Denbow 1979; Evers 1975; Gard and Mauny 1961; Jones 1978; Lampl 1968; 

Maggs 1976; Mason 1968; Mille 1970; Saumagne 1952; Seddon 1968; Wright 2007). 

Such studies illustrate the great potential for these approaches to expand our 

understanding of the archaeological record at the landscape scale and a diversity of social, 

economic and political processes. But again, these applications have been uneven. 

Studies by Jones (1978), Maggs (1976), Evers (1975), Mason (1968), and others 

revolutionized archaeological understanding of Iron Age settlement patterns throughout 

much of southern Africa. Meanwhile, on African islands, like Madagascar, aerial remote 

sensing has been much more limited in its archaeological applications (Fournier 1973; 

Mille 1970). Since the advent of commercial satellite imagery, only one study (Clark et al. 

1998) has been applied in this region.  Such insufficient aerial coverage of African islands 

have severely limited our understanding of their settlement history.  
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Neglecting to make use of aerial and spaceborne technologies makes it more likely 

that African archaeological sites and landscapes will soon be permanently lost. Climate 

change brings with it threats to archaeological deposits, including coastal erosion and sea-

level rise (IPCC 2018; Ministère de l’Environnement, des Eaux, et des Forêts 2006; USAID 

2016). Some of the sites most vulnerable to climate change contain the earliest traces of 

human (and early Homo) history (Erlandson 2012), while others represent the center of 

ancient global trading networks and are actively eroding (Radimilahy and Crossland 

2015). Many coastal and island sites in Africa are also important for understanding past 

human adaptation and resilience in the face of climate and other pressures (Douglass and 

Cooper 2020; Thompson and Turck 2009; Turck and Thompson 2016). With today’s 

impending climate crisis, it is imperative to learn all that we can from these sites before 

they are lost.  

Further damage occurs from political instability and conflict (Casana and Laugier 

2017; Francioni and Lenzerini 2006; Harmanşah 2015; Pollock 2016), and economic 

inequality (Brodie et al. 2006; Parcak et al. 2016) . To address anthropological questions 

concerning demography, the nature of social and political organization in prehistory, and 

the ecological entanglements of early populations, systematic archaeological 

investigations are required (e.g., Stahl 2005; Verhoeven 2017). Remote sensing 

instruments provide the ability to survey large geographic areas much faster than 

traditional approaches, as has been demonstrated by many studies throughout the world 

(Beck et al. 2007; Bescoby 2006; Biagetti et al. 2017; Bini et al. 2018; Borie et al. 2019; 

Casana 2014; Cerrillo-Cuenca 2017; Davis, Lipo, et al. 2019; De Laet et al. 2007; Evans 

et al. 2013; Freeland et al. 2016; Guyot et al. 2018; Harrower et al. 2013; Jahjah et al. 

2007; Johnson and Ouimet 2014; Klehm et al. 2019; Krasinski et al. 2016; Lasaponara et 

al. 2014; Lipo and Hunt 2005; Meyer et al. 2019; Schuetter et al. 2013; Thabeng et al. 
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2019; Zanni and Rosa 2019). This ability is vital in the face of accelerated rates of cultural 

heritage loss, which threatens African communities and livelihoods (Mire 2017). 

 Remote sensing has rapidly advanced over the past several decades, and the 

application of some of the more recent innovations in image processing appear 

underutilized within African contexts. We argue that these latest trends in remote sensing 

can offer a cost-effective solution for addressing the issue of systematic broadscale survey 

in Africa by reducing the amount of time required to investigate landscapes, thereby 

improving our overall understanding of landscape level phenomena throughout the 

region’s history. 
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Figure 2-1: Map of remote sensing case studies discussed in the text. It provides the 

locations of many recent studies – and several older ones – that have demonstrated the 

potential of remote sensing research and the benefits of some more recent analysis 

techniques.  

Limitations of Recent Remote Sensing Archaeology in Africa 

The field of remote sensing and image analysis is constantly expanding, with an 

explosion of new processing techniques emerging over the past few decades. With such 

advances come costs, however, and oftentimes these costs prevent their utilization. For 

example, sensors such as LiDAR permit for the identification of topographic anomalies 

and have been successfully applied to archaeological prospection around the world 

(Cerrillo-Cuenca 2017; Davis, Lipo, et al. 2019; Evans et al. 2013; Guyot et al. 2018; 

Lasaponara and Masini 2013; Trier et al. 2019). However, such technologies are 

infrequently used for archaeology in Africa (one exception being (Sadr 2016b)) and 

elsewhere because the cost of LiDAR ranges from the tens-to-hundreds-of-thousands of 

dollars and is not affordable for most researchers. Commercial satellite imagery while less 

expensive (~$20+ per km2), is still out of the financial reach of some research teams. Thus, 

while LiDAR and very-high-resolution satellite imagery have been used for archaeological 

research in other parts of the world, such applications require extensive budgets, and 

funding for African archaeological research is sometimes limited (Clark 1994; Robertshaw 

2012). Other sensors and datasets, however, are available for free (e.g., Landsat, 

Sentinel-1 and 2) and provide similar capabilities. 

In addition to new sensors and technologies, there have been advances in image 

processing methods, which have not yet been widely disseminated through the Africanist 

archaeology community. Specifically, the emergence of object-based image analysis 

(OBIA) over the past 15-20 years (Blaschke 2010) has seen major improvements in 

accuracy and identification capabilities for archaeological objects (see Davis 2019 for a 
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review; also see Magnini and Bettineschi 2019). Such techniques have been successfully 

applied to systematically parse through datasets for archaeological information and 

produce results with higher accuracy than traditional pixel-based approaches (Sevara et 

al. 2016). Automated methods – especially OBIA – help to save time and money on 

surveying (Davis, Sanger, et al. 2019), and this is particularly important in regions where 

sites are deteriorating due to anthropogenic and other forces. 

In addition to OBIA, many advanced classification algorithms – such as random 

forest, support vector machine, and neural networks – are only just beginning to be utilized 

by Africanist archaeologists. Such approaches have produced highly accurate results in 

northern and southern Africa (Biagetti et al. 2017; Thabeng et al. 2019). The recent (and 

otherwise limited) introduction of such remote sensing techniques in Africanist 

archaeology may be partially explained by training opportunities for Africanist scholars as 

well as the abundance of research conducted by scholars outside of Africa.  

Archaeological remote sensing training opportunities are offered at a myriad of 

African universities, museums and research institutions, with several courses offered by 

Nigerian, South African, and Ethiopian institutions. For example, Obafemi Awolowo 

University in Nigeria offers a number of training opportunities in remote sensing, and even 

has a Center for Remote Sensing and GIS (RECTAS). Most opportunities for remote 

sensing training within Africa appear to be not directly affiliated with archaeology, however. 

Exceptions include Addis Ababa University in Ethiopia, where the Archaeology and 

Heritage Management Department offers cartography courses, and the University of the 

Witwatersrand, which offers remote sensing courses in the Department of Geography, 

Archaeology, and Environmental Studies. The results of several workshops and 

occasional short courses in remote sensing have resulted in training manuals (Wright 

2017). Additionally, the African Association of Remote Sensing of the Environment 
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(AARSE) holds a biannual pan-African conference at which new remote sensing methods 

are shared amongst a community of remote sensing experts. It would be useful for 

Africanist archaeology organizations to establish linkages with AARSE and encourage 

archaeologists to attend the AARSE conference. 

While limited training within Africa cannot alone explain the dearth of 

archaeological remote sensing studies in the region, it is a limiting factor for Africanist 

scholars within Africa to utilize such methods. Because much of the funding for 

archaeology in Africa comes from outside the continent (Ellison et al. 1996; MacEachern 

2010; Robertshaw 2012), and much of the literature pertaining to remote sensing is 

conducted by scholars outside of Africa, a limit in training opportunities for local 

archaeologists is certainly a contributing factor for the low number of recent studies when 

compared to other regions around the world (e.g., Europe). Robertshaw (2012: 98) also 

emphasizes the structural inequality in funding for African archaeology: “while the number 

of indigenous African archaeologists has been increasing across the continent in recent 

years, their access to research funds and logistical support is miniscule compared with 

that of their overseas colleagues” (also see Arazi 2011; MacEachern 2010). 

Another possible reason for a lack of remote sensing stems from the mindset that 

archaeology requires the highest resolution datasets (which are usually costly to acquire). 

Most often, remote sensing research in archaeology is focused on directly identifying 

archaeological deposits in image data, and this requires high spatial resolution (~1m or 

less) and spectral resolution (i.e., multispectral, hyperspectral capabilities) (Beck et al. 

2007). However, there is also extensive work on indirect identification of archaeological 

deposits, usually using medium-to-course resolution images (Agapiou et al. 2014; Bennett 

et al. 2012; Davis, Andriankaja, et al. 2020; Kirk et al. 2016). Direct investigation utilizes 

high resolution data in which archaeological deposits can be visualized and identified. In 
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contrast, indirect investigation – whereby archaeological features are not directly visible – 

relies on proxies to estimate the likelihood of sites being present in a given area (e.g., Kirk 

et al. 2016). 

Where funding and resources are limited, indirect methods are the best option for 

increasing remote sensing studies in a region. Using freely available satellite imagery 

(e.g., Landsat, Sentinel-1, Sentinel-2), researchers can conduct analyses of vegetation 

patterns to identify likely cultural deposits on large (>50km2) geographic scales. 

Furthermore, the use of explicit theory (e.g., human behavioral ecology models [Charnov 

1976; Fretwell and Lucas 1969; MacArthur and Pianka 1966]) can be used in conjunction 

with remote sensing to improve such predictive modeling approaches (Davis and 

Douglass 2020; Verhagen and Whitley 2012).  

Given the abundance of freely available remote sensing datasets available with 

coverage for the entirety of the African continent, as well as many open-source softwares 

that can be used to process this imagery (see Table 2-1), it is via an indirect approach that 

remote sensing can be most easily and cost effectively integrated into archaeological 

research procedures in this region. 

Table 2-1: List of open-source/freely available data repositories and software platforms 

for remote sensing analysis. While not an exhaustive list, the table provides some well-

known and other less known platforms which have strong capabilities and datasets for 

African regions.  

Resource 

Name 

Operating 

Systems 
Notes/Capabilities Reference 

QGIS 

(formerly 

known as 

Quantum 

GIS) 

• Windows 

• MacOS 

• Linux  

• Has an extensive 

number of plugin 

software, some of 

which (e.g., GRASS, 

Orfeo) have significant 

remote sensing 

analysis capabilities, 

(QGIS Development Team 

2018) 
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including automated 

and OBIA analyses 

SAGA 

• Windows 

• Linux 

• FreeBSD 

• MacOS 

• Contains many 

environmental 

modeling tools and 

visualization 

algorithms. 

(Conrad et al. 2015) 

Google 

Earth 

Engine 

• Internet 

based. Any 

operating 

system will 

run with 

internet 

connection 

·  Repository of freely 

accessible image datasets 

·  Cloud-based computer 

processing allows for 

extremely fast analysis on 

large datasets 

·  Ability to conduct 

automated analysis 

algorithms 

(Gorelick et al. 2017) 

R 

• Windows 

• MacOS 

• Linux 

• Solaris OS 

• Coding platform with 

many remote sensing 

packages (e.g., 

raster[Hijmans 2019], 

RStoolbox [Lautner et 

al. 2019]) 

(R Core Team 2020) 

Earth 

Explorer 

• Internet 

based. Any 

operating 

system with 

internet can 

access 

• Remote sensing data 

repository for the 

United States 

Geological Service 

(USGS). Contains 

datasets ranging from 

satellite data to LiDAR 

and aerial imagery 

around the globe. 

https://earthexplorer.usgs.gov/  

Copernicus 

• Internet 

based. Any 

operating 

system with 

internet can 

access 

• Remote sensing data 

repository for the 

European Space 

Agency satellites (e.g., 

Sentinel 1 and 2). 

https://scihub.copernicus.eu/  

 

While some of these open-source platforms are well known by archaeologists both 

within and outside of Africa (e.g., Google Earth), others are less recognized. For example, 

Google Earth Engine (GEE; Gorelick et al. 2017) is a free platform for educational, 

about:blank
about:blank
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research, and nonprofit groups. GEE can be used to access remote sensing imagery and 

analyze these data with complex image processing algorithms that otherwise require an 

extensive coding background or potentially costly commercial software. Researchers have 

demonstrated that Google Earth Engine (GEE) is adept for archaeological prospection, 

specifically for digitizing archaeological feature boundaries and automating feature 

detection (Liss et al. 2018). A recent review of GEE indicates that while its use among 

remote sensing specialists is on the rise, African research has not engaged with this 

platform in a major way (Luo et al. 2018). Considering the capabilities of GEE – both as a 

data repository and platform for simple-to-complex analyses – and the fact that it is free 

to use, there is great potential for Africanist archaeologists to integrate it into their toolkits. 

Trends in Remote Sensing Research in African Archaeology 

 Remote sensing has a long history in archaeology (Capper 1907; Lindbergh 1929), 

but the applications of this technology in Africa are more recent and scarcer than in other 

areas. In a recent special issue of Geosciences published on archaeological remote 

sensing, Africa was only represented by two of 14 articles (Nsanziyera et al. 2018; 

Oduntan 2019), of which only one (Nsanziyera et al. 2018) was a case study while the 

other (Oduntan 2019) was a discussion of legal statutes relating to geospatial research in 

the region. This example is not an outlier, but represents a trend in recent remote sensing 

archaeology, where many of the latest developments are focused on other regions, 

primarily in the northern hemisphere (Davis 2019). Africa represents over 30 million km2 

and, while numerous studies have employed landscape level survey since the start of the 

21st century, a vast amount of territory remains incompletely investigated (Figure 2-1). In 

Madagascar, for example, the largest African island consisting of ~500,000 km2, less than 

1% of the island has been systematically investigated using remote sensing techniques. 
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To ensure at-risk archaeological deposits are recorded in a systematic fashion, the latest 

advances in image processing and automated analysis methods are imperative.  

Beginning in the 1950s, Africanist archaeologists have taken advantage of aerial 

photographs and identified thousands of archaeological sites from various time periods 

across the continent (e.g., Denbow 1979; Evers 1975; Jones 1978; Maggs 1976; Mason 

1968; Saumagne 1952; Seddon 1968). Saumagne (1952) conducted an aerial survey of 

archaeological sites in Tunisia. Almost a decade later, Gard and Mauney (1961) used 

aerial photographs to identify monumental earthen mounds in modern-day Senegal. 

Following these studies, aerial vantage points were utilized by archaeologists to identify a 

range of different features. 

Denbow (1979), for example, identified hundreds of Iron Age sites in Botswana on 

the basis of vegetative patterns observed in aerial photographs. Denbow’s work led to a 

better understanding of hilltop settlement dynamics and their connection with surrounding 

landscapes. This landscape-level work has also allowed us to test theories about the 

interactions between different communities of foragers, farmers, and herders in the 

Bosutswe region. Recent remote sensing studies continue to build on this earlier work but 

have begun to pay closer attention to subtler and less well-studied components of the 

archaeological record (e.g., Klehm et al. 2019). 

Similarly, work conducted by Maggs (1976) was foundational for Iron Age 

settlement studies in southern Africa (e.g., Evers 1975; Jones 1978). The information 

obtained from these aerial surveys allowed for the development of site typologies and the 

analysis of specific environmental and social contexts that affected settlement choice 

(Huffman 1986). 
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On Madagascar, Mille (1970) used aerial photographs to identify and record 

approximately 16,000 fortified sites in an area encompassing 47,000 km2 in the central 

highlands (Figure 2-1). These photographs were systematically investigated to create 

settlement density maps which were then statistically tested to classify sites into different 

settlement types (Fournier 1973). Mille’s (1970) study transformed archaeologists’ 

understanding of settlement histories of the 15th-19th centuries by unveiling extensive 

monumental constructions throughout central Madagascar which were previously 

unrecorded. With this new information, Mille (1970) was able to calculate settlement 

densities and find connections between political transformation and settlement patterns 

(Fournier 1973). 

While aerial photographs can provide helpful information, the interpretation of 

(oftentimes) black-and-white images with little-to-no spectral data is inherently limiting. 

Many early studies that relied on aerial photography identified the largest archaeological 

sites, while overlooking or under-evaluating more subtle cultural deposits (see Klehm et 

al. 2019:69-70 for a brief discussion). The identification of cultural deposits via aerial 

photographs has resulted in the identification of many large structures (e.g., Denbow 

1979; Maggs 1978; Mille 1970), but very little in the way of smaller domestic structures. 

This stems from a combination of resolution issues, lack of multispectral bands, and the 

limits of human analysts in identifying certain patterns and textures in photographs. The 

prospection of subtle features of the archaeological record has been enhanced by 

advances in computer learning and improvements in sensor resolution. 

Following the explosion of satellite data in the 1980s and 1990s, remote sensing 

applications in African archaeology began integrating multispectral sensors into analysis 

(e.g., Allan and Richards 1983; Clark et al. 1998; Lightfoot and Miller 1996; Richards 1989; 

Williams and Faure 1980). Much of this work has emerged in the last two decades using 
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both medium- (e.g., Sentinel 1 and 2, Landsat) and high-resolution (Worldview 2 and 3; 

Ikonos, etc.) sensors (Clark et al. 1998; Klehm et al. 2019; Meredith-Williams et al. 2014; 

Nsanziyera et al. 2018; Nyerges and Green 2000; Reid 2016; Schmid et al. 2008). The 

application of multispectral satellites has permitted archaeologists to use subtle 

differences in the electromagnetic spectrum to identify disturbed landscapes and 

anthropogenic activities.  

For example, Clark et al. (1998) illustrate the benefits of multispectral and 

synthetic-aperture-radar (SAR) data - an active sensor that can detect moisture content 

and textural properties of ground surfaces (Chen et al. 2017) – for understanding 

Madagascar’s settlement history. The researchers focus on several hundred square 

kilometers of area (Figure 2-1) and shed light on the development of land-use throughout 

the region as well as insight into where the oldest archaeological contexts are located. For 

example, there have been many recent archaeological discoveries that place cultural 

contexts in association with ancient megafauna species, including elephant birds (ratite 

genera Aepyornis and Mullerornis) (Douglass 2016; Parker Pearson et al. 2010; 

Radimilahy 2011). In addition, Clark et al. (1998) show how archaeological deposits often 

produce discernable patterns that are distinct from modern day landscape boundaries. 

Thus, identification of temporally older cultural features can be made on the basis of their 

placement in the modern landscape. By so doing, remote sensing provides archaeologists 

with the capability of monitoring known sites as well as locating new ones. 

These advances are not limited to Africanist research and have a long tradition in 

remote sensing archaeology around the world (Bini et al. 2018; Kirk et al. 2016; 

Lasaponara et al. 2014; Luo et al. 2019; Opitz and Herrmann 2018; Parcak 2009; Traviglia 

and Cottica 2011; Verhoeven and Sevara 2016). Multispectral sensors have also been 

used to develop vegetative indices that show the relative health of vegetation and can be 
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used as a proxy of archaeological activity (see Bennett et al. 2012; Klehm et al. 2019; 

Thabeng et al. 2019), and such indices have proven useful in the detection of 

archaeological deposits dating to different periods throughout Africa (Biagetti et al. 2017; 

Klehm et al. 2019; Reid 2016; Sadr 2016b; Schmid et al. 2008; Thabeng et al. 2019). 

Additionally, they can be used to monitor the impacts of human activities on cultural 

materials (Reid 2016; Rüther 2002).  

Monitoring anthropogenic impacts on cultural heritage represents one major trend 

of remote sensing archaeology in Africa (Casana and Laugier 2017; Lasaponara and 

Masini 2018; Parcak 2007, 2009; Parcak et al. 2016), and is at the forefront of major 

projects involving the continent (e.g., EAMENA, http://eamena.arch.ox.ac.uk/). The 

Endangered Archaeology in the Middle East and North Africa (EAMENA) project (Bewley 

et al. 2016) has created an open-access digital database of aerial images and 

archaeological data with the goal of rapidly evaluating the status of cultural heritage 

preservation throughout the Middle East and North African region. The use of these data 

has resulted in numerous publications on the importance of aerial survey for cultural 

heritage management (e.g., Fradley and Sheldrick 2017; Hobson 2019; Rayne et al. 2017; 

Zerbini and Fradley 2018). Additionally, programs like UNITAR's Operational Satellite 

Applications Programme (UNOSAT) have resulted in thorough damage assessments to 

cultural heritage in Syria (UNOSAT 2014). 

A second trend in Africanist archaeological remote sensing is the use of vegetative 

indices for the identification of archaeological materials. For example, Biagetti et al. 2017 

studied early Holocene settlements in the Sahara, Schmid et al. 2008 investigated soil 

properties in anthropogenic environments in Ethiopia, and Reid 2016 investigated 

settlement patterns in Sierra Leone (Figure 2-1). In these projects, scholars calculated 

relative vegetation health and growth and matched these trends with areas of known 

about:blank
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anthropogenic activity. These signatures were then used as a basis for understanding the 

ecological effects of human land-use (e.g., Nyerges and Green 2000) and allowed for both 

the indirect prospection of archaeological materials via geochemical signatures and the 

monitoring of cultural materials at risk of damage or destruction. Such approaches are 

particularly useful because they can provide important information using both high- and 

medium-resolution datasets (Biagetti et al. 2017). In contrast, direct detection of sites via 

spectral or geometric properties requires higher resolution data (see Beck et al. 2007).  

A third trend in African remote sensing archaeology is the focus on mapping 

geomorphological properties of landscapes and their relationship to ancient settlement 

patterns. Such studies have successfully identified both archaeological sites and 

geomorphological features, such as paleolakes in the Sahara (e.g., Biagetti et al. 2017; 

also see El-Baz 1998) and ancient stone quarries in Egypt (De Laet et al. 2015). This 

approach is important, especially for studying human-environmental relationships, as it 

reveals interconnections between natural resources and human settlement patterns. For 

example, Clark et al. (1998) illustrate how specific environmental features (i.e., 

paleodunes) can act as markers of archaeological activity, and recent work confirms this 

conclusion by incorporating paleodunes among other features into a predictive model 

(Davis, Andriankaja, et al. 2020). Geomorphological studies in North Africa have also 

provided insight into where ancient rivers were located, which holds potential for 

identifying archaeological sites (El-Baz 1998).   

Remote sensing datasets are increasingly analyzed via machine learning 

classification procedures, and this represents a fourth emerging trend in remote sensing 

archaeology in Africa, as well as globally. Semi-automated analysis techniques involve 

the use of statistical classifiers, machine learning algorithms, and/or specialized image 

processing software to aid in analyzing remote sensing datasets with greater accuracy 
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and speed. Such methods have been applied increasingly during the past few decades 

(Bennett et al. 2014; Davis 2019; Lambers 2018; Traviglia and Torsello 2017), including 

in Africa (Klehm et al. 2019; Reid 2016; Schmid et al. 2008; Thabeng et al. 2019). In the 

past year, the number of remote sensing studies utilizing automated methods in Africa has 

increased (e.g., Davis et al. 2020; Klehm et al. 2019; Thabeng et al. 2019), and this trend 

applies to global archaeology as well (Davis, Lipo, et al. 2019; Davis, Sanger, et al. 2019; 

Meyer et al. 2019; Trier et al. 2019; Verschoof-van der Vaart and Lambers 2019). In some 

instances, researchers are using automated methods solely for landscape classification, 

and the identification of cultural deposits remains a manual task for analysts (e.g., Biagetti 

et al. 2017). More recently, however, archaeological studies have utilized machine 

learning algorithms to directly identify archaeological materials. 

Automated analysis methods have been implemented in Africa using high-

resolution multispectral Worldview-2 imagery. Thabeng et al. (2019) create training data 

to conduct random-forest and support vector machine classifications to distinguish 

between anthropogenic and non-anthropogenic land-types throughout southern Africa 

since 900 AD. Their random forest classification uses an iterative predictive modeling 

approach to select ideal classes for datasets on the basis of popular consensus among 

the different nodes (Pal 2005). Support vector machine classification then identifies 

optimal separations between classes and can produce highly accurate results, even with 

small training data sets (Mountrakis et al. 2011). Advanced classification algorithms can 

thus help to automate the prospection of archaeological sites on the basis of spectral 

characteristics with a high rate of accuracy (>95%). There are some issues of 

misclassification, however, which can be resolved using object-based image analysis 

(OBIA) classification methods (Thabeng et al. 2019).  
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Another recent application of automated remote sensing is Klehm et al. (2019), 

who use an unsupervised classification algorithm – wherein a computer divides an image 

into classes without the input of a human analyst – to identify spectral signatures 

associated with cultural deposits in Botswana. Klehm and colleagues’ (2019) draw 

attention to hinterland areas with less dominant archaeological features, as the focus of 

archaeological research in this area was historically on clusters of hilltop settlements (e.g., 

Denbow 1979). They identify and field test 10 new archaeological sites, of which 8 were 

confirmed to be Iron Age deposits (Klehm et al. 2019). Klehm et al. (2019) demonstrate 

the benefits of automated survey procedures, and the role that these methods can play in 

improving predictive modeling of archaeological site locations in areas that suffer from 

lack of funding and survey capabilities. As such, automated remote sensing surveys are 

vital for increasing our understanding of the archaeological record in areas where survey 

is difficult or otherwise impeded. 

While (semi)automated analysis methods have advantages in terms of processing 

speed and identification capabilities, programming automated procedures requires 

training, trial and error, and time, as the processes are often quite complicated and 

software are not always user friendly. There are, however, many online forums and 

tutorials that can aid researchers in performing specific kinds of tasks (a simple search in 

YouTube will lead to hundreds of video tutorials using both commercial and open-source 

software). It should also be mentioned that there are currently no “fully-automated” 

archaeological remote sensing methods: every remote sensing analysis requires 

validation of results, usually by ground visits or other assessments of accuracy. As such, 

all automated procedures discussed, here and elsewhere, are truly “semi-automated” 

procedures.  
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OBIA represents a recent advancement in automated detection in archaeology (ca. 

mid-2000s; see (Davis 2019)). Simply, OBIA is an image‐processing technique that 

segments an image into discrete components on the basis of one or more geometric or 

textural characteristics. It has been demonstrated that such methods are more accurate 

than traditional “pixel-based” image analysis methods (see Sevara et al. 2016) and can 

be used for different scales of analysis ranging from microscopic to global-scale imagery 

(Magnini and Bettineschi 2019). OBIA has since been followed by neural network analysis 

and other machine learning techniques (Verschoof-van der Vaart and Lambers 2019). 

Despite the improvements in the accuracy and reliability of automated detection using 

OBIA, archaeologists are yet to apply OBIA within African archaeology (Davis 2019a), in 

part due to limited training opportunities (see above) and costs often associated with such 

processing methods. Use of OBIA can also assist in distinguishing between anthropogenic 

and non-anthropogenic features (Davis, Lipo, et al. 2019; Lambers et al. 2019; Thabeng 

et al. 2019). 

While automated methods are gaining popularity, plenty of work is still conducted 

using manual analysis (Mattingly and Sterry 2013; Rayne et al. 2017; Sadr 2016a, 2016b). 

For many researchers, manual analysis can be particularly useful, especially with open-

source datasets like Google Earth. The use of manual analysis methods (including 

ground-testing identified results) is always a necessary component of remote sensing 

analysis, but complementing these with automated approaches helps to reduce biases 

and inconsistencies in purely manual results (Bennett et al. 2014; Davis 2019a; Verhoeven 

2017; also see for example Sadr 2016b). While automated analyses introduce their own 

sets of assumptions and limitations, these biases are explicit and largely reproducible. 

Manual analysis, however, contain largely implicit biases on the part of the analyst and 

can introduce confounding assumptions in the analysis of remote sensing data. Part of the 



31 

 

slow introduction of automated methods relates to cost, as such software can be 

exceedingly expensive. Processing capabilities of platforms like Google Earth Engine 

(Gorelick et al. 2017), however, offer free access to a variety of automated image 

processing algorithms, as well as the ability to code specifically designed processes for 

those with coding backgrounds (see Table 2-1).  

Future Directions for Remote Sensing in African Archaeology 

Increased integration of remote sensing approaches in African archaeology will 

provide many avenues for future exploration and discovery. The first step is to expand 

remote sensing surveys into areas where such methods are largely absent and where 

cultural heritage is at increased risk (e.g., climate change, political instability, etc.). This 

large-scale effort can be accomplished through a combination of direct and indirect 

investigations. 

 Indirect investigations face challenges, however, and require innovative 

integrations of remote sensing methods with explicit theories and models designed to 

explain cultural phenomena. Such frameworks are central to disciplines such as 

anthropology, geography, and history. Currently, one of the fundamental limitations of 

most archaeological remote sensing studies is their implementation sans anthropological 

theory – with anthropological referring to frameworks mentioned previously (Thompson et 

al. 2011). In most remote sensing investigations, identification of patterns or objects in 

datasets is most commonly conducted using methods and theories exclusively from 

geosciences and physics.  

For example, many researchers have used vegetative indices to predict the 

locations of cultural deposits (e.g., Biagetti et al. 2017; Kirk et al. 2016; Lasaponara and 

Masini 2007; Schmid et al. 2008) but most of these studies do not incorporate explicit 
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theoretical models – e.g., ethnography, human behavioral ecology, niche construction, 

etc. – when building indexes of archaeological activity. While these approaches are useful 

for identifying archaeological sites, they can be limiting in addressing more complex 

archaeological questions. For this reason, remote sensing archaeology is often published 

as individual case studies (Calleja et al. 2018; Davis, Sanger, et al. 2019; Lasaponara and 

Masini 2007; Traviglia and Cottica 2011) that demonstrate the usefulness of specific 

approaches but are never developed to address questions of broad anthropological 

significance.  

Much of the recent literature employing new analytical methods for remote sensing 

are purely experimental, and thus are interested solely in developing methods that can be 

more widely applied by future work. This is inherently useful and should be encouraged. 

Nonetheless, some researchers have begun incorporating the results of such remote 

sensing analyses into broader anthropological syntheses, and this should become 

commonplace in future research (Borie et al. 2019; Cerrillo‐Cuenca and Bueno‐Ramírez 

2019; Freeland et al. 2016; Inomata et al. 2018; Rutkiewicz et al. 2019). 

Because of the disconnect between remote sensing applications and 

anthropological theory, coarser-resolution imagery is often ignored or avoided by 

archaeologists because they cannot directly identify deposits, save those that are 

extraordinarily large (such as fortifications, walls, and roadways) (Beck et al. 2007; Zanni 

and Rosa 2019). However, there is an abundance of freely downloadable data that is 

available for nearly every inch of the globe, and despite its lower resolution (~10-30m or 

greater), such datasets can be extremely beneficial for archaeological analyses (Agapiou 

et al. 2014; Borie et al. 2019; Breeze et al. 2015; Kirk et al. 2016; Zanni and Rosa 2019).  
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A recent study by Nsanziyera et al. (2018) makes use of anthropological variables 

in conjunction with geoscience frameworks and freely available remote sensing datasets 

to predict the locations of archaeological sites in a 1000 km2 area in Morocco (Figure 2-

1). By incorporating anthropological, as well as environmental variables into their model, 

the authors achieve ~93% accuracy, thereby demonstrating the utility of theoretically 

driven analyses and freely available datasets. Another recent study by Davis and 

colleagues (2020) developed a predictive remote sensing algorithm using freely available 

Sentinel-2 imagery predicated on theoretical insights from human behavioral ecology. The 

method successfully predicted the location of both known and previously unrecorded 

deposits with an accuracy of over 95%. Africanist archaeologists are well-positioned to 

lead the way on the integration of anthropological models and theories into applications of 

remote sensing, given the long tradition of theorizing population movements, the 

emergence of complex social, political and economic forms, regional interaction and other 

landscape-scale behaviors (Anquandah 1987; Ashley et al. 2016; Breunig et al. 1996; 

Harlan and Stemler 2011; Stahl 1985; Wynne-Jones and Fleisher 2015).  

With the acquisition of remote sensing datasets at higher spatial and spectral 

resolutions, it is possible to directly identify archaeological deposits, rather than assign 

general probabilities of where these features are most likely to be located (Calleja et al. 

2018; Davis, Sanger, et al. 2019; De Laet et al. 2007; Klehm et al. 2019; LaRocque et al. 

2019; Lasaponara and Masini 2007; Thabeng et al. 2019; Traviglia and Torsello 2017; 

Trier et al. 2009). While future work should attempt to acquire and analyze high-resolution 

imagery (e.g., IKONOS, SPOT, Worldview, etc.), the immediate priority should be to 

develop robust theoretical models that can be tested using freely available imagery. This 

will allow the greatest number of archaeologists – regardless of financial capabilities – to 

begin utilizing remote sensing technologies.  
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In addition, future work should seek to analyze satellite imagery using a mix of 

automated and manual procedures. This will permit researchers to: a) eliminate observer 

biases that are often abundant in purely manual evaluations of remote sensing data; and 

b) systematically investigate entire regions in short spans of time. Automated methods, 

such as OBIA, can also improve our understanding of site dynamics, as these approaches 

can classify feature shape, size, and other morphometric properties (Davis, Sanger, et al. 

2019).  

Conclusions 

This paper has reviewed the application of aerial and spaceborne remote sensing 

methods for landscape analysis in African archaeology. These techniques offer great 

potential to increase our knowledge of the human past and help to record and protect 

cultural heritage that is at risk from anthropogenic and natural forces. While Africanist 

archaeology has a long history of aerial surveys, the most recent advances in aerial and 

spaceborne technology have been slow to break into research practices in the region. 

With an increasingly threatened archaeological record, methods to quickly and accurately 

record this information are essential.  

Climate-related risks are increasing rapidly (IPCC 2021) and much of the African 

coast is in danger of sea level rise and erosion. Equally problematic for archaeology in 

other regions of Africa are anthropogenic forces such as urban development and looting 

activity. In the case of looting, in particular, researchers have demonstrated the power of 

remote sensing technologies to identify cultural materials under threat (Casana and 

Laugier 2017; Lasaponara and Masini 2018; Lauricella et al. 2017; Parcak et al. 2016; 

UNOSAT 2014; Xiao et al. 2018). It is therefore necessary to increase the rate at which 

researchers document the archaeological record, as many African archaeological 

deposits are rapidly disappearing (Erlandson 2012; Parker Pearson et al. 2010).  
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Remote sensing can also aid in creating more robust archaeological datasets 

which can form the basis of large-scale landscape level studies (Davis, Sanger, et al. 

2019; Freeland et al. 2016; Inomata et al. 2018; Menze and Ur 2012) and improve the 

speed and accuracy of mapping archaeological deposits (Hesse 2010). The speed and 

accuracy attainable through remote sensing survey methods are essential for future 

archaeological research, as datasets continue to expand.  

Ultimately, the integration of remote sensing into the mainstream of Africanist 

archaeology is underway, and as knowledge of cost-effective datasets and processing 

software increases among Africanists, research using these methods should increase 

substantially. We emphasize many such platforms above and hope that this article assists 

researchers in accessing useful analytical tools. However, it is also essential that training 

in remote sensing techniques become a featured component of archaeology programs 

throughout Africa and Africanist departments more broadly. Rigorous training is especially 

critical for the use of techniques involving machine learning and automated analysis. 

Scholars in Africa have long made important contributions to the study of 

landscape change, settlement histories, and spatial analysis. By incorporating remote 

sensing datasets into future studies, Africanist contributions will be enhanced with more 

complete datasets and greater geographic coverage of the diversity of Africa’s human 

past. 
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Chapter 3: The aerial panopticon and the ethics of archaeological remote 

sensing in sacred cultural spaces2 

 

Within archaeological remote sensing, the ethics of aerial photography are often 

overlooked, especially when areas of interest involve local, Indigenous, and descendant 

(LID) communities. While surveillance has been highlighted within the context of aerial 

and spaceborne remote sensing archaeology (Myers 2010), the literature on this topic is 

scarce. The ethical quandary surrounding surveillance parallels dilemmas of “who controls 

the past” (Colwell 2016), specifically in terms of who is permitted to “collect, retain, and 

use” large-scale datasets derived from aerial and spaceborne sensors (Cohen et al. 2020). 

Image data, in particular, has reinforced colonialist agendas and has had severely 

negative consequences in many instances for LID groups around the world (Gordon 1997; 

Hartmann et al. 1999; Ranger 2001). With the creation of larger remote sensing datasets 

with extremely fine spatio-temporal resolutions and virtually unlimited spatial coverage, 

issues of power and surveillance must be confronted head-on to ensure that future 

research is equitable and avoids repeating the many injustices of colonial era research. 

A primary issue to address is the epistemological dissonance between remotely 

sensed and other classes of data (see Millican 2012; Thomas 1995, 2008). Knowledge 

produced by remote sensing instruments is often viewed as fundamentally different from 

other sources of archaeological and anthropological data, such as ethnohistoric 

information, because they are collected from the sky and are thus assumed to be 

disconnected from and less impactful to communities on the ground (see Hacιgüzeller 

 
2 Davis, D. S., Buffa, D., Rasolondrainy, T., Creswell, E., Anyanwu, C., Ibirogba, A., Randolph, 

C., Ouarghidi, A., Phelps, L. N., Lahiniriko, F., Chrisostome, Z. M., Manahira, G., & Douglass, K. 

(2021). The aerial panopticon and the ethics of archaeological remote sensing sacred cultural 

spaces. Archaeological Prospection, 28(3), 303–318. https://doi.org/10.1002/ARP.1819 

https://doi.org/10.1002/ARP.1819
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2012). This creates a disconnect between local community views of space and place and 

the viewpoint of the aerial surveyor (Ingold 1993; Mark and Turk 2003; Rennell 2012; 

Thomas 1993) and serves to deny sovereignty of LID communities over the acquisition 

and use of remotely sensed data. The disparity in the treatment of different classes of 

information augments an already uneven power structure between archaeologists and LID 

communities. This power dynamic is critically dependent upon LID representation in 

scientific research, and a collaborative approach can help balance existing power 

structures by providing more sovereignty to LID communities. 

In combination with other classes of data, remote sensing can be used to enhance 

archaeological and historical interpretation. For example, Wadsworth (2020) underscores 

how different techniques can create complementary narratives about landscapes and their 

history, and that researchers can combine different data sources (like remote sensing and 

local histories) to produce interpretations that are more meaningful for researchers and 

LID communities. Douglass, Walz and colleagues (2019) emphasize that such integration 

of multiple data sources is, in fact, necessary to minimize the risk of inaccurate or biased 

interpretations of how people and landscapes co-evolve. Nonetheless, remote sensing 

archaeology does not always take an integrative and collaborative approach. Unequal 

power dynamics between the observer(s) and the observed remain deeply entrenched 

(Eubanks 2017), and this is particularly significant when observed parties have deep 

histories of connection to the places that they live (i.e., LID communities). 

The uses of remotely sensed imagery in archaeology have a broad range, 

encompassing small-scale, localized studies of specific sites and locations, broader 

regional surveys, and landscape-scale assessments of at-risk cultural heritage with 

agendas quite distinct from other academic initiatives. As such, in what follows, our 
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discussion is primarily targeted towards those uses of remotely sensed data that target 

traditional homelands of LID communities with long histories associated with the 

landscape under investigation, and particularly the use of high-resolution datasets where 

culturally-significant features can be directly identified and recorded. Nevertheless, our 

reflections on the ethics of remote sensing archaeology are certainly relevant to broader-

scale investigations and studies using lower resolution data. Our aim is not to present a 

“one size fits all” solution, as different research programs will have different ethical 

dilemmas to face. Rather our paper seeks to spark a conversation about how 

archaeologists wield significant power and influence through their use of remote sensing 

technologies, and that this power has the potential to have real and devastating 

consequences on LID communities. Thus, regardless of scale or scope of the research 

agenda, we must confront these power dynamics to ensure that communities are not 

negatively impacted by our work. 

Certainly, in many heritage management projects rooted in large-scale surveys, 

the scale of the analyses and level of detail are not always great enough to constitute a 

violation of privacy, per se. Massive archaeological undertakings of landscape mapping 

have advanced scholarly understandings of many regions around the world (e.g., Bewley 

et al. 2016; Casana 2014; Hobson 2019; Menze and Ur 2012). Nevertheless, even where 

such work has lower data resolutions and less direct contact with individual sites and 

cultural features, ethical considerations with regard to local communities remain 

imperative. In the context of large heritage management surveys, previous community and 

participatory  mapping and education initiatives demonstrate some of the ways that 

researchers are beginning to engage local communities within landscape-scale projects 

(e.g., Casana 2020; Fisher et al. 2021; Parcak 2019; Yates 2018; also see community 

archaeology projects like The Chiltrns AONB [https://www.chilternsaonb.org/], Whiteadder 

https://www.chilternsaonb.org/
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[https://whiteadder.aocarchaeology.com/], among others). Additionally, these large-scale 

initiatives can also increase local or regional representation on project boards so that local 

concerns can be more consistently acknowledged and addressed. 

Recently, a number of researchers have begun to address ethical issues 

surrounding remote sensing archaeology (e.g., Chase et al. 2020; Cohen et al. 2020; 

Davis and Sanger 2021; Gupta et al. 2020), but attention remains limited, particularly 

considering the scope of the ethical issues at stake in the use of remote sensing 

technologies. In addition to an ethical consideration of power imbalances resulting from 

aerial or spaceborne sensing, there are also legal considerations. While the proliferation 

of drone technology into the private and commercial sectors has been met with legal 

regulations on their use in some areas, laws governing aerial and spaceborne remote 

sensing are largely ambiguous or entirely unrelated to issues of privacy (Oduntan 2012). 

International aviation laws claim that nations are entitled to “complete and exclusive 

sovereignty” of airspace above their territorial boundaries (Haney 2015), but space law is 

not as concrete. Furthermore, despite the clarity of aviation laws, disputes over jurisdiction 

still arise. For example, Native American nations view airspace and land as part of the 

same continuous territory, and thus claim jurisdiction over both, while U.S. aviation 

regulations run counter to this sovereignty claim (Haney 2015; Reddix-Smalls 2014). 

International law, therefore, does not create a legal panacea that solves all issues of 

legality and ethics. There are even regions of the world where legal policies are limited, or 

non-existent, regarding safety and privacy of citizens in relation to aerial technologies, or 

how such data are used (Oduntan 2019). Since remote sensing technology has opened 

vast amounts of space to exploration by archaeologists, the question posed here is 

whether the collection and analysis of remote sensing data from locations where data 

collected at the ground level would otherwise be “off-limits” are ethically justifiable.  

https://whiteadder.aocarchaeology.com/
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In the work presented in this thesis, my colleagues and I use satellite remote 

sensing to identify archaeological sites. My work on this project inspired this particular 

chapter and deeper probing of the ethics of remote sensing research, especially when it 

involves the investigation of sacred cultural spaces and communities with deep historical 

ties to the landscapes under study. Here, we thus primarily consider a case study from 

Southwest Madagascar, where diverse communities have lived for hundreds to thousands 

of years and where there are strict taboos (fady or faly) governing access to parts of the 

landscape, especially with regard to vahiny--people outside of the endogamous 

community (Cinner 2008). Remote sensing, however, allows outsiders to have 

unrestricted aerial access to these locations, and Malagasy law only requires a permit for 

the use of certain technologies (e.g., drones) but does not require permission from local 

communities for the use of remotely sensed data. Regardless of legality, we ask whether 

it is ethical for researchers to conduct geospatial analyses of the SW Malagasy landscape 

without the consent and collaboration of LID peoples? We suggest that the answer 

ultimately lies in who benefits from the sensing of these spaces and the research that 

comes from this action (see Cohen et al. 2020). Furthermore, we argue that the use of 

remotely sensed data should not adversely impact any party, especially LID communities 

in the region under study.  

In fact, with collaborative remote sensing approaches, archaeologists have the 

capacity to engage with communities that have often been excluded from many past 

investigations because of highly mobile and transient lifeways that make the study of their 

connections to landscapes more difficult. Such research agendas could help empower 

highly vulnerable populations who have been victims of displacement and 

disenfranchisement.  Furthermore, geospatial technologies more broadly have been 

leveraged in powerful ways to revision and center the histories and agency of Black, 
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Indigenous, and People of Color (Dunnavant 2021), as these are inscribed in land and 

seascapes. 

We advocate approaches to the use of remote sensing technologies that engage 

LID communities in active collaboration and knowledge exchange. This includes 

discussing how remote sensing technologies work, understanding local opinions about 

these methods, developing research plans in consultation with LID community members 

and landowners prior to any aerial survey taking place, involving community members in 

the survey process, and maintaining transparency about the use of remotely sensed data 

throughout the research project. Transparency is at the heart of collaborative 

archaeological practice, and is central to co-producing science in a just manner (Atalay 

2012; Douglass, Morales, et al. 2019; Lyons 2013; Wadsworth 2020). As Gupta et al. 

(2020, S47) state: “greater attention to community-driven intellectual efforts can enhance 

the bonds of trust between Indigenous and non-Indigenous peoples, a situation that can 

meaningfully address colonial practices in archaeology.” 

In what follows, we outline the power imbalance that can result from aerial and 

spaceborne sensing in the form of a panopticon dynamic (sensu Foucault 1995[1975]). 

Next, we discuss these issues within the context of Southwest Madagascar. Our objective 

in the article is to critically evaluate the ways in which remote sensing archaeology can 

create or accentuate unequal power dynamics between local communities and 

researchers and their institutions. To this end, we evaluate the opinions of LID 

communities in Velondriake, Madagascar, about the use of remote sensing instruments 

(specifically drones and satellites) for documenting culturally significant places. We draw 

on our experiences in working with local communities in this area to challenge currently 

accepted assumptions about power dynamics within remote sensing archaeology. In such 
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a discussion, we acknowledge that some may be uncomfortable with the framing of our 

discussion, as we are ultimately suggesting that power must be more equitably shared 

between researchers and stakeholder communities--put more bluntly, we are implying that 

power must be ceded by researchers who have hitherto held it. At the same time, we 

stress that this article should not be seen as an attack on particular individuals or practices, 

but rather as a critical self-reflection about how to increase the equity of our research 

practices.  

Surveillance and Power: Foucauldian Dynamics 

In his book, Discipline and Punish, Michael Foucault (1995 [1975]) outlines the role 

of surveillance in the construction of a power structure between members of society. In 

particular, Foucault focuses on the panopticon (Benthem 1791), an architectural style 

employed in many European prisons wherein guards watch inmates from an elevated 

central tower. The guards’ presence or absence in the tower is unknown to prisoners. 

Prisoners must, therefore, assume that guards are always present.  

Much like the panopticon, remote sensing offers a “birds-eye” view of entire 

regions with unfettered access and visibility, and limited indication to people on the ground 

of when the landscape is being surveilled. Many remote sensing technologies (like aerial 

photography) became prominent through their military applications, including the survey 

of battlefields and enemy territories (Parrington 1983). RADAR technology, which has 

gained popularity in archaeological remote sensing (e.g., Chen et al. 2017), saw its largest 

development during WWII, when it was extensively used to look for enemy submarines 

and aircraft (Parrington, 1983). Furthermore, while satellite imagery was first proposed as 

a step forward for scientific research, it was an essential tool used by Russian and 

American agencies in the space race during the Cold War. In fact, the United States 
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Navy’s Bureau of Aeronautics was intimately involved in the creation and launch of the 

first satellites (Rosenthal 1968).  

The development of remote sensing techniques for military purposes may explain 

the lag in ethics concerns regarding these methods (Pollock 2016), as the early intent of 

much of this technology was espionage, which by definition does not involve consent 

(Gogarty and Hagger 2008). Personal property and “private” spaces are inherently 

revealed and all restrictions are ignored. While archaeologists may not think of their work 

as surveillance or espionage, the potential ramifications of using aerial or spaceborne 

imaging systems to photograph people’s homes and property does require careful 

thought, especially when the bounds of an investigation involve culturally sensitive areas 

or communities that have historically been exploited by colonialist/imperialist agendas. 

Applications of remote sensing can be positive, negative, or both, but regardless these 

tools result in a shift of power towards the observer(s) and away from the observed. 

Therefore practitioners need to be conscious and intentional about how they are engaging 

communities in the gathering and application of remotely sensed datasets.  

While the panopticon can be viewed negatively, there are also positive elements 

of such surveillance mechanisms. Advances in science and medicine require surveillance 

mechanisms to address important questions on a range of topics, and such hierarchical 

observation can also help to counter dominant power structures (Galič et al. 2017:23). For 

example, a "constitutional panopticon" flips the roles of observers and observed to 

oversee governmental officials and those in places of power (Brunon-Ernst 2013). 

Therefore, the concept of a panopticon is neutral (see Haggerty 2006), but can make 

positive or negative impacts depending upon how such power dynamics are exploited. 
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Unlimited access to remotely sensed data can therefore come at a cost: it can 

exert power over those living in investigated spaces (see Myers 2010). For example, local 

perceptions of being surveilled can induce behavioral change through fear and can limit 

the ability of local communities to make managerial decisions about their land and 

resources. Gupta et al. (2020) illustrate this issue in Canada, where legal statutes limit the 

authority and capacity of First Nations communities to access archaeological information 

compiled from “big data'' sources like satellites and aerial surveys. This creates a power 

imbalance resembling Jeremy Benthem’s (1791; also see Foucault 1995 [1975]) 

panopticon, wherein researchers and government employees are given total control of 

datasets in most instances, leaving indigenous peoples without any authority to 

control/manage their own cultural heritage or how this information is used. This threatens 

sovereignty and local rights over data access and privacy (see Myers 2010). To use these 

data without consulting with stakeholder communities is a breach of trust, confidentiality, 

and establishes an all-too-familiar power structure in which the academic elite dominates 

the histories and heritage of LID communities. 

On Madagascar, for example, the French colonial administration undertook 

widespread cartographic projects in the 19th and 20th centuries which often undermined 

LID communities and served to solidify colonial control of land and resources (Amelot 

2017). In order to protect places from surveillance, local informants sometimes 

deliberately left important places out of official records (Figures 3.1-3.2). With increasing 

availability of mapping technology (i.e., satellites, GIS, etc.), mapping these locations 

becomes easier, but to add such locations to new maps would be a transgression of local 

wishes. Not only does mapping culturally significant locations become easier, but it 

becomes possible without ever consulting local communities, thereby creating a top-down 
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power structure where the foreigner can be perceived as ever-present, always watching, 

and the surveilled may have little authority to object (sensu Foucault 1995 [1975]).  

Of course, the nature of surveillance and the ethical issues that arise depend, to 

one degree or another, on the nature of the surveillance instrument, the region and people 

under watch (and their ability to object to surveillance activities), the degree of privacy that 

may be infringed upon by such investigations, and the plans for interpretation and use of 

remotely acquired data. For example, coarse-grained satellite imagery cannot detect 

individuals or features smaller than dozens of meters in diameter with any clarity, and thus 

individual privacy will likely not be in question if research only utilizes these lower-

resolution datasets. In contrast, if drones are used, you can identify people, license plates, 

and even coins on the ground; this can certainly violate privacy. But, even in cases where 

individual privacy may not be infringed upon, decisions may be made based on remote 

sensed data that affect the autonomy and ability of communities and individuals to use 

and manage the landscapes they inhabit. Foucauldian power dynamics thus still operate 

at coarse resolutions where the degree of personal privacy infringement is low. Remote 

sensing archaeology should therefore strive to increase engagement with LID 

communities, regardless of project scope and data resolution. In what follows, we focus 

particularly on ethical issues as they pertain to the most significant potential breaches of 

local community privacy rights in the context of culturally sacred spaces. As such, while 

all researchers should bear in mind the arguments and problems put forth here, the degree 

to which our specific recommendations will be relevant will entirely depend upon the scale 

of the analysis taking place, the types of data employed, and the status of local 

communities in the region of focus.  
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Figure 3-1: A map of the Commune of Befandefa (which now also includes 

theVelondriake Marine Protected Area) created by the French colonial administration. 

Notably, the map does not include many important landscape features like caves and rock 

shelters in this area. This was a conscious effort by local informants to keep these 

locations (many of which are sacred or places of hiding from outside interference) secret 

(Credit: Foiben-Taosarintanin'i Madagasikara (FTM)). 
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Figure 3-2: Examples of caves and rock shelters in Velondriake, most of which do not 

appear on official maps, like the one in Figure 3-1. Many caves and shelters are sacred to 

LID communities (Credit: K. Douglass). 

The issues of privacy and confidentiality that arise with the use of geospatial 

technologies like high-resolution aerial/satellite imagery are well established by 

geographers. The American Association of Geographers (AAG 2009) specifically states 

in their code of ethics that “[d]ecisions about the collection, ownership, and analysis of 

geospatial data should be made with a view toward affording individuals and communities 

that bear the burdens of geospatial research the opportunity also to share in its benefits.” 

The AAG continues, stating that field-based projects should return all results and findings 

back to local communities and local collaborators should be included as authors on 

publications deriving from that research (AAG 2009). 

Professional organizations in archaeology and anthropology, however, have not 

demonstrated a unified approach. As Dennis (2020) notes, digital archaeology 

(encompassing all research conducted via computer-based approaches) exists almost 

entirely without well-formulated ethical oversight. For example, the Society for American 
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Archaeology (SAA) has no specific requirements or ethics mandate for community 

engagement, stating that “archaeologists should reach out to, and participate in 

cooperative efforts” (SAA 2016, emphasis added). In contrast the American 

Anthropological Association (AAA) has an explicit guideline that “[a]nthropologists have 

an obligation to ensure that research participants have freely granted consent, and must 

avoid conducting research in circumstances in which consent may not be truly voluntary 

or informed” (AAA Ethics Forum 2012). Similarly, the Code of Ethics for the CAA 

(Computer Applications and Quantitative Methods in Archaeology) specifically 

acknowledges that their work can impact local communities and the general public. As 

such, the CAA “is committed to engagement and consultation with groups and individuals 

impacted by archaeological work carried out by CAA members, with the aim of building 

relationships that are respectful and mutually beneficial” (CAA International 2018). There 

is a growing consensus among archaeologists and anthropologists that local engagement 

is needed, but ethical guidelines are not uniform between regions or organizations, 

especially when it relates to digital research practices like remote sensing. 

This inconsistency extends to the classification of human subject research (HSR) 

by institutional review boards (IRBs). Geographical and geospatial technologies that 

record or contain potentially sensitive geographic information (i.e., GPS coordinates, 

personal identification records, etc.) are heavily scrutinized during IRB processes 

(Appendix A). However, remote sensing data, which inherently contains geographic 

information as well as photographic documentation of cultural locations, are not always 

explicitly mentioned. 

While the use of drones and other aerial imaging systems can monitor and record 

people and their activities, aerial images are only classified as HSR by the United States 
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Government if an investigator obtains information from a "living individual", either directly 

or via means that would be considered private (Resnik and Elliott 2019). For 

archaeological remote sensing research looking at historical, landscape-scale patterns of 

land-use, the absence of identifiable information about living individuals is usually 

interpreted as non-HSR, and therefore an IRB is not deemed necessary. As such, IRB 

forms (e.g., Appendix A, section 22.9) that require information about photographing or 

videoing “subjects” refer to people themselves, not necessarily cultural landscape 

features. However, landscapes are inherently cultural, and in some cases landscape 

features have been granted personhood status (e.g., those connected with ancestors), 

with all the rights that people have (e.g., Roy 2017; Warne 2019; Safi n.d.). 

It is important to emphasize that landscapes are conditioned by and condition how 

individuals and communities use particular spaces. Therefore, they are places infused 

with human values which are embodied within that place (sensu Basso 1996; de Certeau 

1984; Ingold 1993; Lepofsky et al. 2017). Landscapes and humans are inseparable. Thus, 

surveilling landscapes – regardless of whether individuals are present on the landscape 

at the time of data collection – should be thought of in critical terms that adhere to ethical 

standards related to cultural research. Researchers making use of aerial imagery should 

consider that the study of cultural landscapes and features can have the same implications 

as HSR, and may need to be included as such in proposals for IRB approval (see Resnik 

and Elliott 2019; also see AAG 2009). As mentioned earlier, some datasets simply do not 

have the quality to precisely locate specific cultural features, and in such instances the 

connection with HSR may be unnecessary; nonetheless, it is vital that remote sensing 

archaeologists collaborate with local communities to ensure that local perceptions of place 

are understood and respected. 
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Case Study: Madagascar 

Madagascar is the fourth largest island in the world, and sits at the crossroads of 

the Indian Ocean, connecting the cultural spheres of the African continent and Persian 

Gulf to those of South and East Asia, and Indonesia (Radimilahy and Crossland 2015). 

The peoples of Madagascar have diverse cultural practices, beliefs and norms, which 

include a range of taboos (fady or faly). Fady are often tied to specific locations. For 

example, visiting certain locations can be fady, especially for a vazaha or vahiny (outsider) 

to the community (Cinner 2008; Fritz-Vietta et al. 2017; Langley 2006; Pearson and 

Regnier 2018). Fady locations are often associated with privileged or sacred knowledge, 

and with the rights of razana (ancestors; Cinner 2008). Despite strong prescriptions 

governing access to and use of sacred spaces, drones and satellites can scan these areas 

without consent from local leaders, completely disregarding and contravening the wishes 

of LID communities. In this sense, the Foucauldian power dynamics inherent to remote 

sensing make it possible to scan these areas without community consent. 

Over the course of this dissertation project, remote sensing instruments were used 

to survey the Velondriake Marine Protected Area in southwest Madagascar (Figure 3-3). 

During ground surveys to test the accuracy of a predictive model of archaeological site 

locations derived from satellite images (Chapters 4 and 5) there were several instances in 

which the sampling protocol called for ground-truthing fady locations, such as ancestral 

tombs. Upon discovery of the inclusion of these sites in the survey plan, ground 

investigation was suspended or rerouted to avoid trespassing on restricted grounds. 

Because LID communities were consulted and our research team consists of local 

archaeologists and community members, we were cognizant of the potential for our 

geospatial methodology and tools to transgress local fady and carefully avoided 

trespassing on sacred spaces. Our work on this project inspired the current paper and 
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deeper probing of the ethics of remote sensing research. We ask whether fady locations 

should even be visible on freely available datasets (which are oftentimes produced by 

foreign nations or agencies). 

 

Figure 3-3: Location of study region in Southwest Madagascar. Inset map shows the 

Velondriake Marine Protected Area and modern day villages (black dots) located within 

this region. Service Layer Credits: ESRI, Garmin, GEBCO, NOAA NDGC, and other 

contributors. Inset map credits: Google. 

On Madagascar, legal statutes regulating satellite imagery do not restrict access 

or require consultation with LID communities in any form. Drones, in contrast, are more 

heavily regulated. For example, the conditions of use for drones, detailed in the 
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“Instruction N°01 ACM/DRG/17 relative aux conditions d’exploitation des aéronefs 

télépilotés” (http://www.acm.mg/spip.php?article35) lays out clear and specific regulations 

for how and where drones can fly and record images or video. 

Article 2 of this code, for example, specifies that no drone can be flown within 100m 

of a person unless prior consent has been given to the drone pilot from the people in 

question. Furthermore, the drone pilot must identify and take all necessary measures to 

avoid flying over property limits of the land that they are flying above, and if private land 

will be flown over, consultation with the landowner must be acquired. Article 3 of this code 

further specifies that drones are prohibited from encroaching upon prohibited areas. 

Anecdotally, however, we know these stipulations are often ignored by drone pilots where 

we work in Madagascar. 

With respect to spaceborne remote sensing (i.e., satellites), Madagascar has 

ratified several treaties relating to space exploration and space telecommunication 

systems (Oduntan 2019). However, Madagascar has not signed or ratified treaties related 

to liability (LIAB 1972) or object registration (REG 1975; see Oduntan, 2019). Thus, in 

contrast to drones, the use of spaceborne data is essentially unregulated, apart from 

treaties deeming that data collected by such means should be shared with governments 

of states who are impacted. Even in these treaties, however, issues of privacy go 

unmentioned (e.g., The Space Treaty. 18 UST 2410, 610 UNTS 205). In fact, several UN 

resolutions on space activities do not require prior consent of countries targeted by 

satellites, which leaves many concerns regarding privacy rights of nations as well as 

individuals (Oduntan 2011). Therefore, remotely sensed information has the power to 

control without local consent and needs to be closely considered by data users (observers) 

http://www.acm.mg/spip.php?article35
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in order to avoid enforcing unequal power dynamics and/or further disempowering the 

observed. 

Local Opinions on Aerial Imagery 

The Morombe Archaeological Project (MAP), based in SW Madagascar, was 

established in 2011, and is grounded in collaborative and co-produced research on the 

co-evolution of people and landscapes. The project is guided by the fundamental principle 

that science is enriched and made just through collaborative and inclusive approaches 

(Douglass, Morales, et al. 2019). The MAP team comprises over 25 members, 

predominantly from the communities of Velondriake. Several MAP team members are 

authors on this paper. Geospatial tools and data, including drones, handheld GPS 

devices, total stations, and satellite imagery, are central to MAP work, particularly in 

reconstructing landscape-level phenomena related to human mobility and resource use 

(Figure 3-4).  

The suite of geospatial tools used by MAP serve a variety of aims, all of which 

have the potential to yield sensitive information. For example, total stations produce 

detailed maps of individual sites, topography and landscape features. Handheld GPS units 

are used to record geographic coordinates of sites and artifact locations. These data are 

then used to make maps that include locations that are potentially sacred to the 

communities of Velondriake. On a larger scale, satellite imagery is used by the MAP to 

document settlement patterns and drivers of landscape change, while drones are used for 

aerial photography and videography.  

Given the widespread use of geospatial technologies - especially remote sensing 

instruments that produce sensitive information, it is imperative to the MAP’s foundation 

that we engage the ethics of using these tools and data. To that end, the team has 
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gathered information regarding local opinions about the use of drones, in particular, as 

drones are a newer addition to the suite of tools the project relies on. We consider this to 

be an important first step in establishing best practices and a collaboratively produced 

ethics of geospatial technologies in Malagasy archaeology. 

 

Figure 3-4: MAP team member George Manahira assisting with Total Station mapping of 

karst topography around archaeological sites in Velondriake (Credit: K. Douglass). 

To evaluate the opinions of LID communities in Velondriake about the use of 

remote sensing instruments for documenting culturally significant places we draw on our 

work experiences and the work done by the MAP team. Specifically, we focus on local 

opinions on drone imagery because of the highly visible nature of drones and their ability 

to record detailed photographs of culturally significant places.  

We developed a series of questions to guide a critical discussion between MAP 

team members on the best practices for archaeologists using remote sensing 

technologies: 1) do team members feel that drone photography violates local customs and 

privacy? 2) Are people aware of what drones can see? And 3) is there interest among 

community members in how the technology works? Understanding local perceptions can 
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help to avoid unequal power dynamics by modifying remote sensing activities in 

accordance with local norms instead of generating discomfort or fear (and invading 

privacy) through detached surveillance. Thus, our critical self-reflection and discussion led 

to a series of clear revelations that will be central in developing a set of best practices and 

future efforts to generate collaborative work with geospatial technologies in Velondriake 

and elsewhere. Future development of best practices will involve formal interviews with 

LID community members beyond the MAP team and workshops to increase community 

familiarity with these technologies. 

Based on our critical discussions, when using drones to take aerial photographs, 

local views on privacy appear largely dependent upon the places drones are flown. If a 

particular area is fady for people to visit or photograph in general, then drones are not an 

exception. As such, the photography of graves and burial sites via drone is almost never 

allowed, unless express permission has been granted by community leaders. 

Apart from fady areas, there does not seem to be great concern about privacy with 

respect to remote sensing via drones. However, part of the reason for this likely stems 

from the transparent research design of MAP projects. For all projects, the MAP team 

meets with local community leaders to discuss the nature of all archaeological research 

projects. Thus, before photographs are taken or surveys are conducted, community 

leaders are made aware, and any concerns over any aspect of the research is addressed 

before work proceeds.  

With respect to overall interest in drones and remote sensing technologies, we 

have observed that there are many community members who are curious about drones 

when they are used for taking photographs. Recently, the MAP incorporated a Phantom 

IV drone and DJI Digital FPB goggles into its project toolkit (Figure 3-5). These goggles 
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provide the user with a live feed of the imagery being recorded by the drone and the feeling 

of flying over the landscape. Team members and LID community members who attended 

training sessions for the use of the drone and goggles all took turns wearing the goggles 

and viewing this live feed. All reported a feeling of initial disorientation followed by awe at 

the extent of the drone’s view and the clarity of the image. Older members of the 

community, in particular, found the technology disorienting, particularly as it allows the 

user to see themselves from above. The MAP team agreed that hands-on experiences 

with the technology afforded by the goggles significantly altered users’ understanding of 

the power of these tools. This highlights the need to not only discuss the nature and 

capabilities of geospatial tools, but to create opportunities for community members to have 

hands-on experiences that enhance their understanding of their scope and resolution. 

Without an understanding of how these tools work, the collection of imagery with informed 

consent is difficult, if not impossible. 

  

Figure 3-5: Community member in SW Madagascar wearing goggles and viewing live 

feed from drone. 
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In this dissertation project, the MAP team and I used satellite images to remotely 

identify and survey archaeological sites in Velondriake. Due to the volume of satellite 

imagery available, our project investigated over 1000 km2 of the Velondriake area, which 

inevitably includes sacred spaces. According to local community members, there are 

approximately 54 fady places throughout the Velondriake area, and every village within 

this region has at least 3 fady locations. When planning each survey, team members would 

instantly recognize specific locations in the imagery (e.g., nearby towns, villages, and 

cities). Likewise, many could identify locations of prior archaeological work, or where fady 

sites were located. In multiple instances, areas detected in satellite images overlapped 

with fady areas and required changes in survey plans. In these instances, the team's 

collaborative discussion of the satellite data was crucial to ensuring that the research plans 

would avoid sacred spaces. At the same time, it highlighted an important issue with aerial 

and spaceborne sensors: these practically unregulated sources of data can locate 

sensitive cultural information that, in all other instances, would be off-limits to outsiders 

(Figure 3-6). This inevitably tips the scales of power towards the outside observer and 

away from local communities. As such, our critical reflection of this project provides 

important lessons for future remote sensing archaeological work, namely that 

collaboration with LID communities is imperative to ethical research practice. 
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Figure 3-6: Examples of cultural features that can easily be recorded using aerial and 

spaceborne imaging systems. A. Drone image of cultivation areas in the Mikea territories 

east of Velondriake (Credit: G. Cripps). B. PlanetView (Planet Team 2020) satellite image 

of cultivation areas in the Mikea territories (Credit: Imagery © Planet Inc. 2020).  

Discussion 

The use of remote sensing technologies has been historically dominated by 

institutions and scholars in the Global North, with most publications coming from Europe, 

Asia, and North America (Agapiou and Lysandrou 2015; Cohen et al. 2020; Davis 2020b). 

This places scholars and communities in other regions of the world at a disadvantage in 

terms of training to utilize remote sensing instruments to improve knowledge of the past, 

despite the fact that many datasets exist with global coverage (Davis and Douglass 2020). 

Furthermore, it can create an imbalance of power with respect to archaeologists and local 

communities in areas where knowledge of such technologies is limited (Fig. 3.7a), wherein 

outside researchers have the ability to record people and landscapes without local 

knowledge or consent (sensu Foucault 1995 [1975]).  
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Figure 3-7: Illustration of standard versus equitable practice of remote sensing within 

archaeology. A. Standard means by which remote sensing archaeology is conducted. The 

academic acquires aerial/spaceborne datasets, develops a research agenda and 

analyzes that data without consent from or collaboration with LID communities. B. 

Proposed establishment of best practices in remote sensing archaeology centered on 

community collaboration and consent. The academic consults with local communities and 

analyzes aerial/spaceborne datasets collectively within the scope of a mutually agreed 

upon research agenda. 

For example, within North America, Gupta et al. (2020) show how significant 

portions of indigenous historical and archaeological data are “owned” by the Canadian 

government. This leaves many First Nations communities without any control over how 

these data are used or disseminated. Akin to Foucault’s (1995 [1975]) notions of power, 

LID communities are placed at the mercy of foreign powers to monitor and protect their 

cultural heritage, and their sacred places are left in a perpetual state of surveillance by 

those who should not necessarily have access to those places, remotely or otherwise. 

Gupta and colleagues (2020) also state that there is growing interest among First Nations 

communities in this area in controlling geospatial information related to their cultural 

heritage. As our experience shows, local communities in Madagascar are also expressing 
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interest in archaeology and the geospatial technologies being used to collect this 

information. 

The work conducted by the MAP team over the past several years has increasingly 

utilized drones and other remote sensing technologies in fieldwork. What is clear from field 

observations and discussions with LID community members in Madagascar is that 

photography, of any kind, requires mutual consent. While many aspects of privacy do not 

appear to be a major concern (i.e., photographing modern villages and houses), the 

scanning of sacred locales (i.e., ancestral tombs and burials, sacred caves, spaces of 

ritual – like the practice of tromba [trance] – etc.) is taboo and in violation of the wishes of 

LID communities. This largely coincides with the legal statutes in place within Madagascar 

pertaining to drone operation, where permission is needed before operating a drone within 

certain spaces. 

Within the MAP surveys in southwest Madagascar, the level of comfort with drones 

is likely, in large part, due to the transparent nature of MAP practices (see Douglass, 

Morales, et al. 2019). Local community leaders are consulted prior to any archaeological 

field project and any use of drones or other methods are explicitly discussed before any 

work commences. By engaging with local community members before any analysis even 

begins, research is guided by the interests and concerns of LID communities as well as 

researchers (Fig. 3.7b). This helps to restructure the power dynamics involved with remote 

sensing technologies and avoid a panopticon-esque organization with outside researchers 

controlling all aspects of data collection and analysis.  

This notion of mutual benefit is central to many participatory mapping approaches 

in geography and anthropology (Álvarez Larrain et al. 2021; Colloredo-Mansfeld et al. 

2020; Dunn 2007; King 2002; Ramirez-Gomez et al. 2015). By involving local communities 
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in mapping projects that utilize GIS and remote sensing, research is inherently on track to 

adhere to many ethical standards such as providing benefits to local communities (Álvarez 

Larrain et al. 2021; Álvarez Larrain and McCall 2019; Ehrman-Solberg et al. 2020; 

Sanchez et al. 2021). For example, participatory mapping has alleviated conflicts among 

groups over resources (e.g., Kwaku Kyem 2004). Issues still persist in the use of 

participatory mapping, particularly the Eurocentric cartographic representation that is 

standard in GIS (see Álvarez Larrain and McCall 2019). Such views of the world do not 

always align with LID knowledge, and participatory projects must be careful not to force 

certain viewpoints onto others via Eurocentric cartographic representations of the world 

(Álvarez Larrain and McCall 2019; also see Dunn 2007), as this also perpetuates 

asymmetries of power. 

As our discussions above and previous research emphasize for Madagascar (see 

Evers and Seagle 2012), landscapes are cultural phenomena that are inseparable from 

people (also see Basso 1996; de Certeau 1984; Morton 2013). As such, when using 

technologies to record information about landscapes, this work will inevitably have impacts 

on communities living in these places.  While some geospatial technologies like drones 

can have a very invasive effect because of the high resolution of the data and the visible 

presence of the instrument, satellites, in contrast, are not visible to local communities but 

are achieving comparable image quality that can record sacred spaces at sub-meter 

resolution (Figure 3-6). While individuals may not be visible in such imagery, sacred places 

are and can be documented in great detail. The distance placed between many geospatial 

datasets and human subjects research have ultimately created a false dichotomy between 

what constitutes “human-subject” research, as some geospatial data (like GPS points) are 

scrutinized by IRB protocols while others (aerial and spaceborne images) are alarmingly 

absent (Appendix A). As such, archaeologists must be careful about what data they use 
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and how they share this information. Ultimately the dissemination of potentially sensitive 

information acquired from aerial reconnaissance should be an open dialogue with LID 

communities to ensure both the protection of cultural heritage and ensuring local 

autonomy in managing their heritage. 

Conclusion 

In this article, we detail how the concept of the panopticon, central in Foucaultian 

theories of power, apply to archaeological remote sensing. We then provide context on 

how we have addressed these power dynamics during fieldwork in SW Madagascar as a 

means of raising critical awareness about ethical issues inherent to remote sensing 

research. While there is ample access to global remote sensing datasets, archaeologists 

should be reserved in their ambitions to use these without first grappling with the ethical 

issues discussed here. Researchers must ask themselves is this: “Do the places I am 

investigating potentially contain actively sensitive or sacred sites? And if so, would I want 

a stranger recording places that are significant to me without my knowledge or consent?” 

Most likely, if the answer to the first question is “yes”, the answer to the second will not be 

as straightforward (or will result in “no”). Thus, there is a need to communicate with 

communities to ensure that consent and knowledge of research activities are established 

before using these powerful technologies. 

While some datasets (i.e., satellite imagery) are widely (and in some cases freely) 

available, the use of such data with high resolutions that have the capacity to directly 

detect culturally important structures should be in consultation with local stakeholders (Fig. 

7). In the case of newly commissioned remote sensing datasets (e.g., drone imagery, 

aerial remote sensing [e.g., LiDAR], etc.), conversations should take place between local 

communities and researchers before data collection to discuss: 1) the extent of data 



63 

 

collection; 2) how the data can be used; and 3) who should have access to that 

information. 

In sum, we argue that the ethical implications of archaeological prospection efforts 

using remote sensing revolve most heavily around power dynamics. To alleviate such 

issues, a collaborative approach to archaeological remote sensing is needed to ensure 

that research agendas do not violate local communities’ respect for privacy and traditional 

customs. In order to more broadly represent community concerns regarding use of these 

technologies, all archaeological projects using geospatial technologies should engage in 

a structured discussion with LID communities prior to, and throughout  research projects 

that involves a clear set of steps: 1) create shared understanding of the scope, nature, 

scale, resolution of the technology or dataset in question; 2) provide hands-on experience 

of how different technologies operate, 3) generate a plan for the use and dissemination of 

these tools and data that respects LID wishes; 4) make data acquired from that tool 

available to LID community members. Only by making the status of external researchers 

and local communities equal in all elements of research can we avoid power imbalances 

and the ethical pitfalls that accompany such dichotomies. 
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Chapter 4: Satellite-based remote sensing rapidly reveals extensive record 

of Holocene coastal settlement on Madagascar3 

 

The human history of Madagascar, the world’s fourth largest island, is complex 

and involves the movement and dynamic interaction of people, plants, animals, and ideas 

from around the Indian Ocean (Dewar and Richard 2012; Fuller et al. 2014; Radimilahy 

and Crossland 2015). To-date, archaeological, genetic, and linguistic research have 

revealed the earliest known evidence of Madagascar’s far-reaching connections; the 

island lies at the westernmost reach of the Austronesian expansion (Crowther et al. 2016) 

and multiple lines of evidence testify to the migration of Bantu peoples from the African 

mainland to Madagascar (Parker Pearson et al. 2010; Pierron et al. 2017). Important 

questions, however, regarding Madagascar’s human past remain poorly resolved. The 

timing and nature of Madagascar’s human colonization continue to generate intense 

debate in archaeology (Douglass, Hixon, et al. 2019), and our understanding of 

subsequent social, economic, political, and ecological processes is limited, both 

temporally and spatially (Dewar and Wright 1993; Douglass and Zinke 2015).  

Research into Madagascar’s early history requires new approaches to overcome 

existing barriers to our understanding. These include the poorly understood remains of 

ancient foraging and fishing communities, and the relationship between archaeological 

settlement patterns, environmental conditions, and climate change (e.g., Kull 2000; Parker 

Pearson et al. 2010; Wright 2007; Wright and Rakotoarisoa 2003). Landscape-level 

 
3 Davis, Dylan S., Vanillah Andriankaja, Tahirisoa Lorine Carnat, Zafy Maharesy Chrisostome, 

Christophe Colombe, Felicia Fenomanana, Laurence Hubertine, Ricky Justome, François 

Lahiniriko, Harson Léonce, George Manahira, Briand Venance Pierre, Razafimagnefa Roi, 

Patricia Soafiavy, Faralahy Victorian, Vavisoa Voahirana, Barthélémy Manjakahery, and Kristina 

Douglass. 2020. Satellite-based remote sensing rapidly reveals extensive record of Holocene 

coastal settlement on Madagascar. Journal of Archaeological Science. 115:105097. 

DOI:10.1016/j.jas.2020.105097. 
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approaches are critically needed to address these research lacunae. To date, landscape-

level approaches are mostly absent from archaeological studies on Madagascar (for 

exceptions see Dewar and Wright 1993; Mille 1970; Vérin 1986; Wright 2007; Parker 

Pearson et al. 2010). This is partly because ground-based landscape investigations 

require large investments of time and resources in the field to generate sufficient 

information; funding, logistics and a small number of active field archaeologists have 

proven to be barriers to extensive areal coverage. Innovative approaches are critically 

needed to expand archaeological survey coverage and document cultural heritage, 

particularly considering that Madagascar is experiencing increasing impacts from climate 

change. Climate-driven threats on the island extend to both its people and their histories 

(IDMC 2020; Lemahieu et al. 2018; USAID 2016). 

Here we present the first satellite-based remote sensing archaeological survey of 

the Velondriake Marine Protected Area of southwest coastal Madagascar. Using freely 

available satellite imagery, image processing algorithms, predictive modeling derived from 

human behavioral ecology (HBE) theory and ground-truthing survey, our approach 

successfully identifies cultural deposits throughout a ~1400 km2 area. The Velondriake 

(Figure 4-1) case study demonstrates how the development of a predictive model to 

analyze satellite imagery can rapidly expand the known record of archaeological 

settlements on Madagascar, filling both temporal and spatial gaps at the landscape level. 

Systematically documenting ephemeral components of the archaeological record at the 

landscape scale is essential for answering longstanding questions in archaeology 

surrounding human-environment interactions, social complexity, resilience, and mobility 

(e.g., Kintigh et al. 2014). On Madagascar, specifically, little attention has been paid to 

internal migration within the island, but rather focused on arrival events and migration 

between Madagascar and surrounding regions (Allibert 2008; Anderson et al. 2018; 
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Beaujard 2011; Dewar and Richard 2012; Douglass, Walz, et al. 2019; Hansford et al. 

2018; Mitchell 2019; Vérin et al. 1969). By conducting landscape scale surveys of the 

island, we will be able to address how communities moved throughout the landscape, and 

how such mobility was related to environmental, political, and social developments. 

Our case study also highlights the importance of integrating theoretical models 

with remote sensing methods in African archaeology more broadly (Davis and Douglass 

2020). Drawing on lessons from research conducted using HBE and related theoretical 

models from other regions (e.g., Baja California (Codding and Jones 2013), the Channel 

Islands (Winterhalder et al. 2010), Australia (O’Connell and Alien 2012), Polynesia 

(DiNapoli and Morrison 2017), we demonstrate that it is possible to use satellite-based 

remote sensing to test the nature of past human-environment interaction and drivers of 

settlement mobility. We further demonstrate that the integration of theoretical models and 

satellite-based remote sensing methods holds great potential for rapidly locating 

previously unrecorded archaeological deposits at vast geographical scales, even when 

these deposits are ephemeral in nature. 
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Figure 4-1: Map of study area. Inset map shows location of study area on Madagascar. 

Full coverage pedestrian transect survey of a portion of the research area by the Morombe 

Archaeological Project (MAP, 2011-2017) generated preliminary data used to build a 

theoretically-driven remote sensing procedure. Previously unexplored areas were then 

surveyed using our remote sensing imagery and the results of our predictive model of site 

location were then assessed using ground-truthing survey (Satellite image: Sentinel 2; 

Inset map source credits: Esri, GEBCO, NOAA, National Geographic, Garmin, HERE, 

Geonames.org). 



68 

 

Previous Landscape-Level Investigations on Madagascar 

Most landscape-level archaeological investigations on Madagascar focus on 

periods from 900 B.P. to the present and highlight important demographic and political 

processes, including the overall increase in size and number of settlements and the rise 

of centers of political power (Parker Pearson et al. 2010; Wright 2007). Although the 

reliability of chronometric determinations for early periods has been questioned (e.g., 

Anderson et al. 2018; Mitchell 2019), evidence of far earlier occupations exists on 

Madagascar, extending the island’s human record as far back as ~10,000 B.P. during the 

Early Holocene (Hansford et al. 2018). Recent systematic assessment of Madagascar’s 

radiocarbon chronology supports the possibility of an Early Holocene human presence on 

Madagascar, despite a lack of contextual information on the nature of such an early 

presence (Douglass, Hixon, et al. 2019). Given the evidence for Early Holocene human 

activity on Madagascar and the taphonomic and sampling challenges inherent in studying 

Madagascar’s ephemeral early forager sites (Douglass and Zinke 2015), new approaches 

are urgently needed to record and assess over 90% of the span of time for which human 

presence has been recorded on the island. Landscape-level approaches, in particular, will 

be critical to understanding the evolution of settlement patterns and human-environment 

dynamics during early periods of human occupation. A diversity of landscape-level 

approaches has proven useful for understanding the interplay between human behaviors 

and environmental contexts in other parts of the world (e.g., Codding and Jones 2013; 

DiNapoli and Morrison 2017; Jazwa et al. 2017; Winterhalder et al. 2010). 

Despite the critical temporal gaps in landscape-level archaeological investigations 

to-date, understandings of landscapes from the 10th century onwards (Crossland 2001; 

Pearson 1992; Sussman et al. 1994; Tucker 2004; Wallace et al. 2016) have illuminated 

connections between humans and their environmental surroundings. Theory from human 
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behavioral ecology (HBE) and historical ecology have been integrated in ethnographic 

work (e.g., Tucker 2004; Tucker et al. 2010), but such approaches are still scarce in 

archaeological contexts (e.g., Douglass, Walz, et al. 2019). For example, Tucker (2004) 

demonstrates how Mikea foragers’ food-sharing practices are dictated by economic 

factors, reciprocity, kin selection, and tolerated theft. In another study by Tucker et al. 

(2010), HBE is used to understand risk mitigation via the practice of mixed subsistence 

strategies. 

Recent advances in remote sensing methods and datasets (e.g., Davis et al. 2019; 

LaRocque et al. 2019; Thabeng et al. 2019) offer important opportunities for applications 

of remote sensing approaches that promise to advance and expand our understanding of 

the island’s archaeological record, particularly with regard to early and ephemeral sites. 

On Madagascar, previous studies using aerial imagery successfully revealed the locations 

of tens-of-thousands of fortification sites dating as far back as ~600 B.P. (Mille 1970). Most 

recently, Clark et al. (1998) illustrated the potential of multispectral and radar instruments 

for recording landscape patterns that could reveal the locations of archaeological deposits. 

Since Clark et al.’s study, spatial and spectral resolutions in satellite imagery have 

increased, permitting for greater details to be captured by sensors. In turn, researchers’ 

ability to identify subtle landscape deposits (like archaeological sites) have improved, as 

higher resolutions are often needed to detect such features (see Beck et al. 2007). 

Furthermore, advances in image processing techniques have led to a revolution in remote 

sensing analysis (Davis 2019; Lambers et al. 2019; Verschoof-van der Vaart and Lambers 

2019). Our study demonstrates the potential for remote sensing to clarify diachronic 

landscape changes and their human dimensions on Madagascar, as has been achieved 

in other world regions (e.g., Carleton and Collard 2019; Davis 2019b; Stephens et al. 

2019). 
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Methods 

Here, we outline a preliminary study that combines HBE modeling with remote 

sensing survey to predict the distribution of archaeological sites on southwest Malagasy 

landscapes. In this discussion, “site” refers to any area containing two or more artifacts 

during ground surveys. Sites thus encompass artifact clusters, settlements, and any other 

cultural materials present in an area. The approach is based on ideal free distribution (IFD) 

models (see Fretwell and Lucas 1969). These models assume that individuals settle areas 

with the best overall suitability (with regards to available resources) and that, as population 

density and resource consumption increase, settlements shift to areas with lower resource 

suitability. Because the current study lacks absolute temporal control, the assumption is 

made that the earliest sites will be located in “high” suitability areas. Confirmation of this 

hypothesis requires further testing. Here we focus on the density and variability of cultural 

materials present in different suitability locations. Furthermore, we assess whether 

ethnographically and historically important resources (e.g. coral reefs, vegetatively 

productive land, distance to the coast, etc.) are good predictive variables for locating 

archaeological sites in southwest coastal Madagascar. 

Ideal Free Distribution Modeling 

Within HBE, there are a series of different optimality models (optimal foraging 

theory, OFT) which try to predict decision making of individuals based on costs and 

benefits of different actions (e.g., Blurton Jones 1986; Charnov 1976; Fretwell and Lucas 

1969; MacArthur and Pianka 1966; O’Connell and Hawkes 1981). Such modeling 

approaches have proven useful in exploring the rationale behind observed phenomena in 

anthropology, including archaeological evidence of behavior and choice (e.g., Bird et al. 

2016; Codding and Bird 2015; Jazwa et al. 2017; Robinson et al. 2019; Tucker et al. 2010). 

Despite criticisms of OFT (see Zeder 2012), the explicit framework offered by such 
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approaches provides a heuristic device for exploring factors that may influence settlement 

choice in human populations (e.g., Stiner and Kuhn 2016).  

IFD models, a type of OFT model developed by Fretwell and Lucas (1969), have 

been applied in various settings around the world for identifying temporal and ecological 

trends in population settlement distribution (see Winterhalder et al. 2010; Codding and 

Jones 2013; Yaworsky and Codding 2018; Hanna and Giovas 2019).  IFD stems from the 

work of Fretwell and Lucas (1969) and operates on the principle of negative density 

dependence (Winterhalder et al. 2010; Yaworsky and Codding 2018). As population 

pressures increase, the overall resource quality of that area will degrade, thereby lowering 

the suitability of that habitat and its likelihood of being settled.  

The IFD model, however, is simplistic, and there are biological principles that often 

violate its assumptions. For example, the Allee effect accounts for temporary 

improvements in habitat suitability caused by immigrating populations, community 

aggregation, and habitat modification (Fretwell and Lucas, 1969:19). One example of 

Allee-effect IFD comes from Neolithic farmers who modified their landscapes to increase 

agricultural production by clearing forestland (McClure et al. 2009). IFD-Allee models 

predict that individuals settling lower ranking habitats attract others to follow, thereby 

abandoning higher suitability areas (Winterhalder et al. 2010:473). As such, the highest 

suitability areas will have a slightly lower population than medium suitability locations. 

There is also a variant of IFD for when access is restricted, and people establish 

certain controls over resources – ideal despotic distribution (IDD). IDD accounts for 

differences in competitive ability and resource control (Jazwa et al. 2017). In an IDD 

model, the opposite pattern of population distribution is expected from IFD, wherein the 

highest density of individuals will inhabit lower suitability habitats.  
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Since we currently have limited information about the resource management and 

land-use practices of these communities or changes in their demography at a fine 

resolution, we cannot definitively assess whether land-use practices led to degradation of 

environments as the IDD model posits. IFD models, therefore, are used as a theoretically-

framed starting point, rather than IDD, so that we may begin to address this information in 

a theoretically sufficient manner (sensu Lewontin 1974). 

Remote sensing and predictive modeling 

For this study we use freely downloadable satellite imagery from the European 

Space Agency Sentinel-2 satellite (https://scihub.copernicus.eu/dhus/#/home). This 

satellite has proven useful for a wide range of disciplines, including archaeology (Agapiou 

et al. 2014), but its medium-to-low resolution (10m visual and near infrared (NIR), 20m 

NIR and short-wave infrared (SWIR)) constrains its applicability, including for the 

documentation and preservation of cultural heritage. Because archaeological deposits on 

Madagascar’s southern coasts are often subtle artifact scatters, Sentinel-2 data do not 

have the spatial resolution necessary to directly identify these features. However, its 

resolution is conducive to developing a predictive model of site locations using the 

theoretical assumptions of IFD. While similar predictive measures have been used by 

other scholars (e.g., Agapiou et al. 2014; Bennett et al. 2012; Kirk et al. 2016; Lasaponara 

and Masini 2007), most rely on interpreting vegetative indices for soil and vegetative 

anomalies, and do not always utilize explicit theoretical models from anthropology. 

If our method is successful – and the data conform to an IFD – we expect: 1) that 

high value areas will contain the greatest proportion, density, and variety of artifacts; 2) 

these amounts will decrease steadily in Medium, Low, and Null probability areas; and 3) 

that the settlements located in high probability areas will be older than those in other 

https://scihub.copernicus.eu/dhus/#/home
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locations. The third hypothesis is beyond the scope of the current paper and will be the 

focus of future research once sufficient temporal data become available. 

Processing steps of predictive modeling analysis 

1. Based on a review of available archaeological and ethnographic data, we 

developed a list of important resources and landscape features for communities of the 

southwest coast (i.e., Douglass 2016; Douglass et al. 2018; Gommery et al. 2011; 

Pearson 1992, 1997; Tucker 2004; Tucker et al. 2010). These data include locations of 

coastal archaeological sites identified by surface survey and excavation (Douglass 2016; 

MAP 2011-2017). Important variables that influence human settlement include: distance 

from the sea shore; distance from offshore coral reefs; distance from paleodunes; and the 

vegetative productivity of specific locations.  

2. Training samples were created using the 2-D scatterplot function in ENVI to 

develop a total of 6 landscape classes (Figure 4-2): water, coral, bare soil, shrubs, 

paleodunes, and dense vegetation (i.e., mangrove forests). This method was used for 

training sample collection to ensure a minimal amount of spectral overlap between each 

land class. An initial assessment of the spectral properties of the study area led to the 

decision to use the NIR, Red, and Green bands (RGB 843) in order to capture the most 

information pertaining to vegetative health and moisture properties for landscape 

classification. 
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Figure 4-2: A 2-D scatterplot function in ENVI (Exelis Visual Information Solutions 2009). 

Each land-class can be identified by spectral values and overlaps can be minimized. Red: 

paleodunes; Green: coral; Cyan: shrubs; Blue: water; Magenta: dense vegetation. All 

white space is unclassified spectral values within the satellite image. 

3. Sentinel-2 images were classified using a support vector machine (SVM) 

classifier in ENVI 4.7 (Exelis Visual Information Solutions 2009). SVM is a non-parametric 

classification technique that has gained popularity due to its ability to produce highly 

accurate classifications using limited training datasets (Mountrakis et al. 2011). The 

method works by identifying optimal separations between classes and can handle multiple 

classes simultaneously (Pal and Mather 2005).  

4. Coral reefs in some instances were not reliably classified using pixel-based 

methods (i.e., SVM). We therefore used an object-based image analysis (OBIA) approach 

with threshold classification (see Davis 2019a; Sevara et al. 2016). Unlike pixel-based 

methods, object-based methods take shape, texture, and morphology into account to 

classify image components (Blaschke 2010; Davis 2019; Hay and Castilla 2008). This 



75 

 

same procedure was used to classify the locations of offshore islands, which serve to 

extend fishing grounds and offer safe-havens for coastal fishers during periods of political 

instability (Cripps 2009; Douglass 2016:72). OBIA was used to generate shapefiles of 

offshore island and coral locations using eCognition 9.0.1 (Trimble 2014). Multiresolution 

segmentation was conducted using a scale parameter of 60, shape parameter of 0.7, and 

compactness factor of 0.6. These parameters were chosen following trial-and-error, 

wherein the chosen parameters resulted in the greatest accuracy. Following this step, 

pixel brightness thresholds were used to extract all image objects located in areas covered 

by or immediately adjacent to water (as identified by SVM) that matched threshold values 

for coral or offshore island features. Corals within this region contained brightness values 

between 600 and 1150 and offshore islands contained values of 1200 or greater. The 

OBIA results were then assessed manually to eliminate the few errors present throughout 

the study region.  

5. Data generated from the SVM and OBIA classifications were imported into 

ArcGIS 10.6.1 (ESRI 2020) and underwent several processing steps (Figure 4-3). The 

water and paleodune classes were extracted into their own raster layers in ArcMap and 

subjected to Euclidean distance tests. Euclidean distance produces a raster of distance 

measurements between the input (i.e., water and paleodunes) and the surrounding pixels 

in an image. Euclidian distance is appropriate, as opposed to a cost-distance analysis, 

because of the gradual landscape elevation changes in this region. While hills and other 

topographic features are present, there are no extreme elevation changes within the study 

region. 

6. The final variable incorporated is vegetative productivity. To measure vegetative 

productivity a SAVI (soil adjusted vegetative index) was used, which takes into 

consideration soil properties, including moisture content (Huete 1988). Given the extreme 
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variance in soil reflectance characteristics on Madagascar (see Clark et al. 1998), SAVI 

was chosen as the most appropriate index, as opposed to NDVI (Normalized Difference 

Vegetation Index) and others (e.g., simple ratio, leaf area index, etc.; see Jensen 

2007:384–385) that decrease in accuracy over large geographic areas with high 

vegetative diversity (Jensen 2007).  SAVI is calculated using the formula: 

𝑆𝐴𝑉𝐼 =  
𝑁𝐼𝑅−𝑟𝑒𝑑

𝑁𝐼𝑅+𝑟𝑒𝑑+𝐿
 × (1 + 𝐿)   

where the NIR and red bands are used, and L represents the soil adjustment factor. The 

best soil adjustment has been demonstrated around L = 0.5 (Huete 1988; also see Jensen 

2007) and was chosen for this study. Once calculated, SAVI indices that contained values 

associated with the presence of shrubs and other vegetation were extracted and we 

conducted another Euclidean distance function to produce a distance raster of vegetative 

areas. 

 7. With all these variables together, we used the following formula to calculate 

overall probability of early forager settlements in ArcGIS using the raster calculator: 

𝑃𝐴𝑟𝑐 = (
1

𝑑𝑤
+

1

𝑑𝑐
+

1

𝑑𝑝
+

1

𝑑𝑣
+

1

𝑑𝑖
) × 100   

Where PArc is the probability of archaeological deposits, dw is distance from water, dc is 

the distance from coral beds, ds is the distance from paleodunes, dv is the distance from 

land with SAVI index values of .35 or better (this value represents the minimum value for 

shrubland), and di represents the distance to offshore islands. Each distance raster was 

inversed to produce the highest values for the lowest distance from each resource type. 

Once the index was calculated, we used inverse-distance weighting (IDW) interpolation to 

fill in gaps in the probability raster up to 100 m using the elevation void fill function in 

ArcMap 10.6.1 (ESRI 2018). 
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8. Following the development of our predictive model, we assessed the model’s 

ability to detect prerecorded archaeological sites (MAP 2011-2017) and established a 

sampling strategy for field tests to assess the model’s ability to predict the location of 

previously unrecorded cultural deposits. To accomplish this, we first compared the 

locations of prerecorded sites to the probability values generated by the algorithm. Then, 

to assess the algorithm’s ability to detect previously unrecorded materials, we created a 

grid of 50m x 50m squares throughout the entire study area (~1400 km2). Each grid was 

assigned a unique identification number by ArcMap. In Excel, we randomly selected 600 

ID numbers using the “randbetween” function. These 600 areas were then checked to 

ensure they were accessible on foot. Ultimately, a total of 145 areas were selected on the 

basis of proximity to other points, accessibility, and feasibility of visitation during the 2019 

field season. Among the randomly selected grids, 73 contained “high” probability zones, 

31 contained “medium probability”, and 27 had “low” probability. Surveyors did not have 

any prior knowledge of the probability of locating sites to ensure an unbiased recording of 

materials. Table 4-1 shows the quantitative breakdown of these qualitative categories. The 

remaining 14 areas had null probability values and were chosen to assess false negative 

results. 

Table 4-1: Quantified thresholds of probability index and their qualitative equivalent 

classifications. Class thresholds were calculated using a Natural Breaks (Jenks 1967) 

method. 

Quantitative Values Qualitative Ranking Equivalent 

Null/Blank Null 

0-5.5 Low 

5.5-11.4 Medium 

>=11.5 High 
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Figure 4-3: Processing steps of predictive modeling analysis. 

Together, these methods produced information needed to calculate overall habitat 

suitability, and by extension, probability of settlement for coastal communities. Based upon 

the expectations of IFD, the highest suitability (and hence probability) locations will hold 
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the greatest number of archaeological deposits, with lower suitability areas containing 

fewer archaeological assemblages.   

Results 

SVM resulted in 93.6% accuracy (KIA = 0.931) (see Tables 4-2 and 4-3) and OBIA 

attained an overall accuracy of 97.7% (KIA = 0.914) for the classification of the chosen 

environmental land-types (Tables 4-4 and 4-5).   

Table 4-2: Confusion matrix for SVM classification. Numbers are total ground-testing 

points. 

Class Mangroves Dunes Coral Water Forest Shrubs Sand/ 

Bare 

Ground 

Total 

(# of 

points) 

Mangroves 98876 0 0 0 2297 0 0 101173 

Dunes 0 45570 0 0 0 0 343 45913 

Coral 0 0 20478 0 0 0 0 20478 

Water 0 0 0 126383 0 11 0 126394 

Forest 2614 0 0 0 173492 0 138 176244 

Shrubs 1 0 0 0 6051 31274 117 37443 

Sand/Bare 

Ground 

0 0 0 0 3 839 18103 18945 

Total 101491 45570 20478 126383 181843 32124 18701 526590 

 

 

Table 4-3: Producer’s and user’s accuracy for SVM classification 

 

Class Producer Accuracy 

(%) 

User Accuracy (%) 

Mangroves 97.42% 97.73% 

Dunes 100.00% 99.23% 

Coral 100.00% 99.96% 
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Water 99.99% 100.00% 

Forest 95.41% 98.43% 

Shrubs 97.32% 83.52% 

Sand/Bare 

Ground 

96.80% 95.56% 

 

Table 4-4: Confusion matrix for OBIA classification. Numbers reflect amount of training 

objects. 

Class Islands Coral Total # 

Islands 795 8 803 

Coral 14 141 155 

Total (%) 809 149 958 

 

Table 4-5: User's and Producer's Accuracy for OBIA classification. 

Class Producer’s Accuracy (%) User’s Accuracy (%) 

Islands 98.3 99.0 

Coral 94.6 91.0 

Prediction of pre-recorded site locations 

Within the entire dataset of prerecorded archaeological deposits (n = 756), we find 

that only five previously surveyed deposits do not fall within areas identified by the 

algorithm (Figure 4-4). All of these deposits are located on paleodune features, however, 

suggesting a strong relationship between this environmental context and human 

settlement. The model thus reliably predicts the location of pre-recorded deposits. 
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Figure 4-4: Results of Archaeological Probability Index and select pre-recorded sites. A. 

Sites represent those recorded by recent survey work between 2017 and 2018 and earlier 

surveys recorded by the MAP between 2011-2018 (see Douglass 2016). B. Shows 

closeup of a cluster of sites found in map A. C. Shows another cluster of sites in map A. 

Both clusters (B and C) fall primarily on high and medium values. 
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Prediction of previously unrecorded site locations 

To assess the ability of the model to locate previously unrecorded cultural 

materials, ground surveys were carried out on 71 of the 145 selected sites during the 

summer of 2019 (Appendix B Supplemental Table B-1). A variety of different materials 

were recovered during surveys, ranging from ceramics and beads to elephant bird 

eggshell and marine shells (Table 4-6). When assessing these artifacts, we distinguished 

between “definitive” and “possible” human presence, with “definitive” referring to materials 

that were clearly made or altered by people (e.g., ceramics, modified shell, etc.) and 

“possible” referring to materials that are in direct association with other cultural artifacts or 

contexts, such as burning activity. The results largely fit the hypothesis that high suitability 

areas will contain the greatest proportion, density, and variety of artifacts and that these 

amounts will decrease steadily in Medium, Low, and Null probability areas. However, there 

is a slight increase in the density of artifacts within medium probability zones, suggesting 

a possible fit with an IFD with Allee effect model (see Fretwell and Lucas 1969; Figure 4-

5).  

 
Figure 4-5: Density distribution of artifacts recovered from different probability locations. 

Black lines represent the IFD-Allee curves, with the top line representing population 

thresholds for the best habitats, and the second line showing thresholds for less suitable 

habitats. Temporal data is still needed to confirm conformity to an ideal distribution. 
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Table 4-6: Sum of survey results by grid probability value. Note, the amount of material increases between each level, with the greatest 

increase for high probability locations. Lower probability areas still produce artifacts, which is expected, but at lower densities and 

amounts, as predicted by an ideal free distribution model. The variety of artifacts also decreases with probability. 

Grid 

Probability 

Types 

of 

artifacts 

Charcoal Eggshell Marine 

Shell 

Faunal Ceramics Beads Lithics Botanicals Glass Metal Burnt 

Stones 

Coral Total 

Materials 

Collected 

High 9 6 186 204 35 193 26 0 0 0 1 7 1 659 

Medium 8 1 88 102 6 129 3 0 0 1 0 1 0 331 

Low 5 1 54 41 5 39 0 0 0 0 0 0 0 140 

Null 3 0 22 13 1 0 0 0 0 0 0 0 0 36 



 

 

 

Grid probability values are an average of raster pixel data. As such, even “high” 

probability grids may contain values that are lower in likelihood. Therefore, we investigated 

the precise locations where materials are present to see if individual materials are also 

accurately predicted by the model. When examining the locations of individual artifacts, 

we once again find a strong clustering in high probability areas (Table 4-7; Figure 4-6).  

Table 4-7: Descriptive statistics of probability values for specific points within survey grids 

where materials were recovered. The average and most frequently occurring values are 

high probability, thus coinciding with the grid-level data. Note, these calculations ignore 

null values. 

Statistic Quantitative 

Value 

Qualitative 

Value 

Minimum 1.69 Low 

Maximum 22.96 High 

Mode 16.33 High 

Mean 12.71 High 
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Figure 4-6: Shows the points of some specific materials collected during survey. Note 

how the greatest clustering takes place on the highest values, and as values decrease 

the number of materials follows suit. 

Discussion 

The distribution of materials recovered during pedestrian survey suggests that the 

immediate coastline is the most densely inhabited area of the study region (Figure 4-1), 

with material culture abundance (i.e., ceramics, beads, modified shells, etc.) steadily 

decreasing as one moves inland (Figure 4-7). As indicated in Table 4-6, the diversity of 

artifacts also decreases in lower suitability areas, suggesting possible limitations for 

resource acquisition. For example, in high suitability areas, metal and coral artifacts, in 

addition to beads and other artifact types, are present. However, in medium, low, and null 
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suitability areas metal and coral were not recovered, and the amount of beads and other 

artifacts decreases drastically. This raises the possibility that resource access may have 

been controlled, as the variety of materials is not even across the study region.  

 

Figure 4-7: Shows the locations of artifacts (and clusters of artifacts) recovered from grids 

visited throughout the study area during July and August of 2019. Definitive human 

presence is signified by beads, ceramics, and burnt/worked marine shells. Possible 



 

87 

 

human presence is signified by the presence of shells and faunal remains that are burned, 

but not worked or modified, and an absence of ceramics or beads.  

This preliminary landscape analysis illuminates several possibilities to understand 

settlement patterns. Archaeological deposits identified here all fall within the expectations 

of optimal foraging and IFD modeling frameworks. Populations settling the coast of 

southwest Madagascar appear to have prioritized shoreline ecosystems with ready access 

to resources that are still valued today. Cultural deposits found further inland are often 

within flood-zones during the wet season. This pattern coupled with the dearth of cultural 

materials exceeding 5 km from the modern coastline suggest that settlements are greatly 

influenced by marine resources.  

Furthermore, Allee’s principle (Allee and Bowen 1932) argues that community 

formation can produce increased fitness for a population’s survival. Social ties can act as 

Allee effects because they can foster cooperation between individuals, thereby allowing 

for resource acquisition to be shared and limiting the burden on smaller groups or 

individuals. An Allee effect distribution would suggest that coastal foraging populations: a) 

actively changed and improved the suitability of the areas they inhabited (which has been 

documented elsewhere: see Freeman and Baggio 2017; McClure et al. 2009; Quintus and 

Cochrane 2018; Quiros et al. 2017); and/or b) that social networks were strong unifying 

factors that led to significant population movements as environmental resources shifted. 

Additional support for an idealized distribution comes from Kolmogorov-Smirnov 

(K-S) distribution tests which reveal distinct differences between the archaeological data 

and other continuous distribution functions (Table 4-8; Figure 4-8; Appendix B 

Supplemental Code). The data are not normally distributed, nor do they conform to 

Gamma or Poisson patterns. Gamma distributions are often used to evaluate skewed 

datasets with positive values (Hogg et al. 2005) and Poisson distributions measure 
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spacing between randomly occurring events (Haight 1967). The results indicate that 

archaeological distributions are statistically different from these patterns but are closest to 

a uniform dispersal.  

If comparing a uniform dispersal to an IFD, we can expect that in high suitability 

areas IFD will have greater densities than uniform distributions, but moderate distributions 

should be about equal (i.e., densities are distributed rather evenly across moderate 

suitability spaces). When looking at the comparison between the archaeological and 

simulated uniform distribution data, the archaeological data mostly matches this 

expectation. The conformity of the archaeological data to an IFD remains a hypothesis, 

however, as temporal information is needed. Nonetheless, the results of the K-S tests 

provide evidence that justifies further research into this question.  

Table 4-8: Results of K-S tests between archaeological probability distribution and 

randomly generated probability distributions. All tests run in R (R Core Team 2020) using 

the stats package (see Appendix B Supplemental Code). 

Compared Distribution D-value P-value 

Normal 0.83673 < 0.00001 

Gamma 0.80823 < 0.00001 

Poisson 0.81229 < 0.00001 

Uniform 0.13469 0.02438 
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Figure 4-8: Graphical representation of K-S empirical cumulative distribution function 

(ECDF) curve results reported in Table 4-8. Archaeological data is represented by the 

black line. Simulated distribution is represented by the blue line. The red dotted line shows 

the maximum difference between the observed and simulated distributions. 

Consistent with findings by Douglass (2016), this study also suggests a 

relationship in the Velondriake area between possible elephant bird (Aepyornithidae) 

nesting grounds and human settlement locations.  Elsewhere on Madagascar 

associations between cultural contexts and elephant bird eggshell have also been noted 

(e.g., Parker Pearson et al. 2010; Radimilahy 2011; Battistini and Verin 1972). Aepyornis 

eggshell remains are often located in ancient paleodunes which are present along the 

coasts of southern Madagascar and are easily visible from medium-to-course resolution 
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satellite imagery (Clark et al. 1998). The identification and survey of paleodune features 

is likely to yield exciting new information regarding the interaction between humans and 

these large avifauna, and the investigation of paleodunes should be prioritized to better 

understand the processes that contributed to the birds’ decline.  

Future Work 

While the results are highly positive, there is room to improve the predictive power 

of the algorithm developed here. Future work will look to improve the method by 

incorporating additional ethnographic and environmental variables that were potentially 

overlooked, such as groundwater levels. Looking at the results, the greatest density 

clusters of materials seem to occur in areas closest to offshore islands and on coastlines 

that contain coves sheltered by rocky coastal barriers. Conducting spatial-statistical tests 

can reveal the most significant variables for predicting archaeological material and will be 

the focus of future work. 

Furthermore, the results of the surveys carried out under the direction of this 

remote sensing model will be used to address larger questions concerning human-

environmental interaction through time. In particular, future work will integrate settlement 

pattern data with high resolution paleoecological and paleoclimate records, to enable 

modeling of human response to climate and environmental change. This will enable 

researchers to understand settlement and migratory patterns and their connection to 

environmental conditions. As fieldwork continues, temporal data will become available for 

many of these newly identified deposits (see Chapter 8). To date, we know that several 

previously excavated sites dating to ~2500 B.P. (see Douglass 2016) were re-identified 

as “high” likelihood by our algorithm. This suggests that other contemporaneous – and 

possibly earlier sites – will emerge as our ground surveys continue. 
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Based on preliminary analysis of ceramic decorative attributes (see Douglass 

2016) recovered during ground surveys, many of the sites identified using this predictive 

model date to periods between 200-1000 B.P. High probability sites had the greatest 

range in ceramic styles, signifying longer occupational durations, while low probability 

sites had fewer ceramics and less variation. There were also many sites with undecorated 

ceramics, and an absence of ceramics, which tend to signify earlier occupations than 

those with decorated ceramics (Douglass 2016). Furthermore, these surveys contain only 

surface deposits, meaning that these dates likely represent the latest materials on sites 

that were occupied during earlier periods. Seeing as present sea levels were similar to 

those 3000 – 6000 B.P., with a 2-3m rise between 1000 and 3000 B.P. (Virah-Sawmy et 

al. 2009), identified sites that are near the modern coastline and lack ceramics may yield 

information about earlier periods of human settlement that span hundreds-to-thousands 

of years. Radiocarbon dates from follow-up excavations (reported in Chapter 8) confirm 

the presence of dense human occupation over the last 300 years and evidence of earlier 

human activity spanning 800-1200 years, including the presence of lithic traditions that 

predate ceramics in this region. 

Conclusions 

The method developed here is already revealing important information pertaining 

to settlement patterns in Southwest Madagascar. We now have evidence that coastal 

foragers in the past placed importance on similar environmental resources as 

contemporary communities. We also have additional evidence of human-megafauna 

interactions, which will prove useful for understanding extinction patterns and the role of 

terrestrial resources in coastal community lifeways. Furthermore, we have a systematic 

dataset that can be used to test hypotheses regarding internal mobility and migration.  
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Our case study illustrates the utility of HBE theory for framing predictive remote 

sensing analysis. The protocol described here evaluated the probability of cultural activity 

at an average rate of ~50 km2 per hour of processing time.4 With greater processing 

power, this rate can be increased further, saving time, money, and resources by targeting 

high probability areas for ground survey. Additionally, all the analyses conducted here use 

freely available satellite imagery and can be analyzed using open-source software, 

including QGIS (QGIS Development Team 2018) and R (R Core Team 2020). With greater 

access to geo-spatial and statistical training, this work can be greatly expanded by other 

researchers, particularly in regions that are understudied in archaeology.  

The acquisition of remote sensing datasets at higher spatial and spectral 

resolutions will allow researchers to directly identify archaeological deposits on 

Madagascar, rather than assign general probabilities for where these features are located 

(e.g., Calleja et al. 2018; Davis et al. 2019; De Laet et al. 2007; Guyot et al. 2018; 

Lasaponara and Masini 2007; LaRocque et al. 2019; Traviglia and Cottica 2011; Trier et 

al. 2009; Thabeng et al. 2019). Because remote sensing surveys can often only identify 

locations of the largest-scale features – and thereby bias our understanding towards 

specific activities, the use of theoretical models can help to direct ground survey efforts in 

conjunction with remote sensing data to reduce some of these biases by identifying a 

greater variety of cultural activities. The method developed here makes it possible to 

 
4 This ratio was calculated on the basis of the average time allocation for each section of the 

study area. The region was divided into 3 parts totaling ~1400 km2, with each section requiring 

approximately 6-8 hours of computer processing time for the SVM classification and another 2 

hours of manual processing time to create the final probability map. Total, this procedure can be 

achieved with high levels of time- and cost-efficiency which can be cut down even further 

depending upon computing power and processing speeds. Computer used for analysis had an 

Intel® Core™ i7-4790 CPU @ 3.60 GHz Processor with 32.0 GB of RAM. 
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identify early deposits on Madagascar which are currently at risk of disappearing due to 

erosion and sea-level change. We must act quickly to uncover the fragile remains of the 

earliest settlers of Madagascar, as these components represent an actively disappearing 

cultural landscape. Threats to cultural heritage from environmental factors such as erosion 

and sea level rise, are exacerbated by urban development and other anthropogenic 

factors (Douglass 2016; Parker Pearson et al. 2010; Wright and Rakotoarisoa 2003; 

Wright 2007).  

Uncovering and preserving these data requires an expansion of remote sensing 

surveys – via satellites, drones, and other instruments – to rapidly and systematically 

survey vast geographic space. There have been calls in recent years to expand systematic 

survey of Madagascar’s landscape (Douglass and Zinke 2015; Parker Pearson et al. 

2010), including the often-neglected areas inland from the immediate coastline (Douglass 

et al. 2018). While our study looks at coastal areas in the Southwest, the method can 

easily be expanded to inland regions of Madagascar.  

Note: Supplemental files for this chapter are available in Appendix B and from the Penn 

State ScholarSphere repository at: https://doi.org/10.26207/1a47-pw11.   

https://doi.org/10.26207/1a47-pw11
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Chapter 5: Integrating point process models, evolutionary ecology, and 

traditional knowledge improves landscape archaeology: A case from 

southwest Madagascar5 

Predictive modeling has been a staple of landscape-scale archaeological investigations 

for decades (Bettinger 1980; Custer et al. 1986; Jochim 1976; Judge and Sebastian 1988; 

Plog and Hill 1971; Verhagen and Whitley 2012). These models are critical not only for 

the identification of archaeological features but also for better understanding the 

processes underlying their distributional patterns. The methods employed for the 

development of predictive models in archaeology are varied and often integrate expert 

knowledge, geographic information systems (GIS), remote sensing analysis (Custer et al. 

1986; Kirk et al. 2016; Klehm et al. 2019),  linear regression (Alexakis et al. 2011; van 

Leusen et al. 2005; Parker 1985; Warren 1990) and other approaches (see refs. (Howey 

et al. 2016; Verhagen and Whitley 2012)). Other spatial statistical methods can also be 

used for developing such models, but, to-date, have been underutilized in archaeology. 

Predictive modeling in archaeology is also often limited by the lack of explicit theoretical 

frameworks to interpret patterns in the archaeological record (Davis and Douglass 2020; 

Verhagen and Whitley 2012). As we demonstrate below, the integration of theory from 

human behavioral ecology (HBE) into predictive models allows us to test hypotheses 

about processes driving human settlement on a landscape and improve our interpretations 

of settlement patterns. 

 
5 Davis, D. S., DiNapoli, R. J., & Douglass, K. (2020). Integrating point process models, 

evolutionary ecology, and traditional knowledge improves landscape archaeology: A case from 

Southwest Madagascar. Geosciences. 10(8), 267 https://www.mdpi.com/2076-3263/10/8/287. 

 

https://www.mdpi.com/2076-3263/10/8/287
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One example of an underutilized statistical method is point process modeling. 

Point processes are the mechanisms that produce a point pattern (i.e., spatial distribution 

of points). Point process models (PPMs) represent a large class of spatially-explicit 

models that are used to evaluate the underlying processes responsible for different 

properties of spatial patterns (see (Baddeley et al. 2015). A core strength of point process 

modeling is the ability to characterize and distinguish between the effects of the first- and 

second-order properties of a point process.  

A fundamental principle of point pattern analysis is the distinction between the first- 

and second-order properties of spatial point processes (for a detailed discussion see ref 

(O’Sullivan and Perry 2013:41–43). The first-order property is the intensity of the 

underlying process and refers to variability in the density of points across a study region. 

The intensity includes both the average number of points per unit area and the degree to 

which density varies with location, which can be spatially variable (i.e., an inhomogeneous 

process) or constant within a given region (i.e., homogenous process) (Baddeley et al. 

2015). On a landscape, the first-order intensity of a point pattern often results from a 

relationship between the density of a class of points and external variables. For example, 

freshwater (external variable) may influence the distribution of archaeological materials 

(class of points) on a landscape, such as increased settlement density near freshwater 

sources, or the density of trees (class of points) may be influenced by changes in altitude 

(external variable).  

The second-order property is the interaction or dependence between points in a 

point pattern, which results from a process whereby points influence the locations of other 

points. This second-order property is typically characterized by different degrees of 

clustering or dispersion. In human settlements, for example, second-order properties can 

consist of processes related to population interaction (e.g., social or kinship networks, 

conflict, territoriality, etc.) that might result in different degrees of settlement nucleation or 
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spacing. As first- and second-order properties are distinct and result from different kinds 

of processes, distinguishing between these two properties is a major focus of point pattern 

analysis that is critical for accurately modeling and explaining spatial processes (Baddeley 

et al. 2015; Bevan, Crema, et al. 2013; DiNapoli et al. 2019; O’Sullivan and Perry 2013).  

For instance, it is possible that a first-order trend may be mistaken for second-

order interaction simply because points have spatially varying density. In human 

settlements, for example, we might confuse a first-order trend, such as higher density near 

water sources, for second-order settlement clustering, when in fact the pattern may be 

sufficiently accounted for by the first-order effect. It is also possible for a model to under 

account for settlement clustering or dispersion by not including a second-order interaction 

component. Thus, attempting to account for the effects of both first- and second-order 

interaction should be a primary concern in settlement pattern analyses (Carrero-Pazos et 

al. 2019; Davis, DiNapoli, Sanger, et al. 2020; DiNapoli et al. 2019). PPMs offer a range 

of statistical tools to better investigate the relative importance of different factors 

responsible for spatial patterns in the archaeological record, including second-order 

properties. Thus, PPMs can allow archaeologists to distinguish between first- and second-

order effects in settlement patterns even when data on social interaction remain unknown 

or poorly understood. This is critical particularly in areas where archaeological 

investigation is still nascent. While the use of PPMs in archaeology as explanatory tools 

has increased in recent years (Bevan, Jobbová, et al. 2013; Bevan and Conolly 2011; 

Bevan and Lake 2016; Bevan and Wilson 2013; Brandolini and Carrer 2020; Carrero-

Pazos 2019; Carrero-Pazos et al. 2019, 2020; DiNapoli et al. 2019; Eve and Crema 2014; 

Knitter and Nakoinz 2018; Spencer and Bevan 2018; Vernon et al. 2020a), they are still 

relatively underutilized, and few studies have explicitly used them for predictive modeling 

of site distributions (Hamer et al. 2019). 
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In what follows, we employ and assess the efficacy of PPMs for iteratively refining 

predictive models for archaeological survey, using southwest Madagascar as a case 

study. Madagascar is the fourth largest island on Earth and contains a vast archaeological 

record, but areal coverage through survey or excavation remains limited in many parts of 

the island. The region is also important for understanding human history, as it sits at the 

crossroads of a number of major migration routes and trade networks in the Indian Ocean 

(Beaujard 2007, 2011; Boivin et al. 2013; Radimilahy and Crossland 2015). Despite 

decades of research, however, there is still significant debate about the timing and nature 

of the island’s initial settlement by people and the subsequent expansion of settlements 

across the island (Anderson et al. 2018; Douglass, Hixon, et al. 2019; Hansford et al. 

2018; Mitchell 2019).  

In the southwest of Madagascar, communities traditionally practice a mixed 

economy consisting of foraging, fishing, herding and farming (Astuti 1995; Iida 2005; 

Koechlin 1975; Tucker et al. 2010; Yount et al. 2001). Cultural identity in the region is tied 

to ancestral clan affiliation as well as dominant subsistence practices (Yount et al. 2001). 

The coastal region is occupied by Vezo (who are primarily fishers), Masikoro (who are 

primarily agropastoralists), and Mikea (who primarily occupy and forage in the forests 

further inland) (Koechlin 1975; Yount et al. 2001). While there is evidence that foraging 

populations were extant on Madagascar for thousands of years (Dewar et al. 2013; 

Douglass, Hixon, et al. 2019; Hansford et al. 2018), the exact timing of human arrival in 

the southwest and elsewhere on the island is still subject to intense debate among 

archaeologists (Anderson et al. 2018; Mitchell 2019). Based upon limited evidence, it is 

likely that these early human populations were small foraging communities that occupied 

areas around river valleys (Parker Pearson et al. 2010) and karst landscapes along the 

island’s coasts (Dewar et al. 2013; Douglass 2016). To better understand settlement 

patterns on the southwest coast, Davis and colleagues (Davis, Andriankaja, et al. 2020) 
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developed an HBE-based remote sensing/GIS predictive model for locating Late 

Holocene archaeological deposits in coastal southwestern Madagascar and interpreting 

their distribution (Figure 5-1).  

 

Figure 5-1: Map of study region in Southwest Madagascar. The region contains the 

Velondriake Marine Protected Area and has been increasingly documented by 

archaeologists over the past several years.  

The model developed by in the previous chapter (Davis, Andriankaja, et al. 2020) 

is rooted in the ideal-free distribution (IFD) model (Fretwell and Lucas 1969; Weitzel and 

Codding 2020). Using the theoretical predictions of an IFD (i.e., communities will first 

choose to settle the most suitable habitats, identified on the basis of resource availability, 

followed by lower suitability regions) the team compiled a list of important ecological 

variables, which were recorded in ethnohistoric records (Douglass et al. In Preparation). 
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The invaluable insight provided by such traditional ecological knowledge (TEK) has been 

well established (Cooper and Sheets 2012; Huntington et al. 2004; Lane 2015). In 

particular, TEK has increased archaeology’s ability to inform the present by tracing 

feedback loops between human behavior and environmental change (Cooper and Duncan 

2019; Lefale 2010). They then digitized these features using satellite imagery and 

automated image analysis procedures and developed a predictive model rooted in the 

assumption that the closer a point on the landscape is to these resources, the higher the 

likelihood of people settling these locations (Davis, Andriankaja, et al. 2020). During 

ground testing of the algorithm (reported in Chapter 4), more than 1000 individual artifacts 

were recovered from 74 locations throughout the study area in Southwest Madagascar, 

with most of these materials coming from locations ranked as having a “high probability” 

of containing archaeological deposits.  

Nonetheless, in 20% of instances, the predictive model ranked an area as “high 

probability” where no archaeological materials were recorded during pedestrian survey. 

The occurrence of false positives leaves room for improvement in the development of the 

model and also challenges the starting theoretical assumptions of IFD that framed the 

model. One overlooked factor is that these false positives may result from the omission of 

important variables in the construction of the model. Another possibility is that certain 

resources are more important to populations in this area than others, meaning that a 

uniformly weighted model may not fit as well as a model where some variables are more 

highly ranked. Site preservation in this region is quite poor, and so false positives could 

also be related to the disappearance of archaeological sites or visibility issues due to 

dense vegetation (especially in regions further inland).  

It is also possible that second-order properties (e.g., settlement nucleation or 

spacing) are leading to greater densities of archaeological material in some areas of high 
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probability, but not in others, which suggests that first-order trends do not fully account for 

spatial patterns on this landscape. This would support the possibility raised earlier (Davis, 

Andriankaja, et al. 2020) of an Allee-effect, or positive density dependence (a second-

order property), on the distribution of sites, whereby areas with mid-level suitability will 

attract greater population densities because of habitat modifications and community 

aggregation (Bliege Bird et al. 2020; Fretwell and Lucas 1969:19; Winterhalder et al. 

2010). Such community aggregation in lower-suitability environments can also be caused 

by territoriality, as predicted by the ideal despotic distribution (IDD) model (another model 

centered on second-order properties) (Bell and Winterhalder 2014; Fretwell and Lucas 

1969; Jazwa et al. 2017; Summers 2005). Allee-effects and IDDs will result in second-

order properties (i.e. clustering) not accounted for by a first-order trend and can be 

characterized with PPMs.  

By iteratively developing and evaluating different models, we can improve their 

accuracy and be better positioned to explain emerging patterns in the archaeological 

record (Figure 5-2). In this article, we demonstrate how archaeologists can test the 

importance of different factors in a model for accurately predicting the location of 

archaeological deposits. This process allows us to improve the  predictive model 

discussed in the previous chapter (Davis, Andriankaja, et al. 2020) to increase the number 

of true positive detections while limiting false positives when directing field surveys.  
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Figure 5-2: Illustration of iterative modeling process. This method permits for 

simultaneous and constant re-evaluation of the current predictive model and interpretation 

of the archaeological record.  

Building on this previous work by incorporating PPMs allows us to refine the 

current predictive algorithm for Madagascar and improve its utility for future archaeological 

investigations. In particular, we demonstrate how PPMs can be used to characterize 

different environmental variables that predict the first-order intensity of archaeological 

deposits and also to what degree second-order clustering or dispersion properties improve 

predictive accuracy. This approach thus aids in understanding the relative importance of 

different variables and processes responsible for spatial patterns in the archaeological 

record.    
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Materials and Methods  

To re-evaluate the previous (Davis, Andriankaja, et al. 2020) predictive model, we 

take the previous set of variables incorporated into this model as well as some new 

variables that were previously excluded (Table 5-1). The environmental variables used by 

previously (Davis, Andriankaja, et al. 2020) were generated via automated remote sensing 

analysis and vegetative index calculations. The same data are used here and are freely 

available from the Davis et al. (Davis, Andriankaja, et al. 2020) publication’s supplemental 

documents (see Appendix C or https://doi.org/10.26207/1a47-pw11).  

Table 5-1: List of different variables incorporated in Chapter 4 (Davis, Andriankaja, et al. 

2020) and the models developed in this chapter. 

Variable Davis, Andriankaja, et al. (2020)  This Study 

Vegetative Productivity Yes Yes 

Coral Reefs Yes Yes 

Offshore Islands Yes Yes 

Distance to the Ocean Yes Yes 

Paleodunes Yes Yes 

Rocky outcrops No Yes 

Depth to bedrock  No Yes 

The algorithm in Chapter 4 (Davis, Andriankaja, et al. 2020) considered the 

distance from any given point on the landscape to vegetatively productive regions 

(quantified via soil adjusted vegetation index (SAVI) values (Huete 1988)), paleodune 

features (where many recorded archaeological sites in this area are located), offshore 

islands (which were important refuges from warfare and banditry, as well as important 

fishing grounds), and coral reefs. In addition to these variables, field observations indicate 

that rocky outcrops along much of the coastline appear associated with the presence of 

archaeological deposits. This is potentially related to freshwater access (Tucker 2020) as 

well as defense and survival strategies. Oral histories from coastal dwelling Vezo 

https://doi.org/10.26207/1a47-pw11
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communities in the Southwest of Madagascar indicate that limestone outcrops often 

provide good locations for hiding from marauders (Langley 2006). Ethnographic and 

archaeological sources also suggest that freshwater availability is particularly important 

when selecting village locations (Beaujard 2011; Douglass, Walz, et al. 2019; Iida 2005; 

Langley 2006; Tucker et al. 2010). The outcrops act as rainwater reservoirs and are still 

used by communities in the region today for gathering freshwater.  

Because freshwater source data is not available for the study region, we also use 

depth to bedrock as a proxy (Fishman et al. 2011; Gabrielli et al. 2012). The shallower the 

bedrock depth, the closer to the surface, and more accessible, groundwater reservoirs are 

expected to be. Depth to bedrock and soil data used for our analysis (Hengl et al. 2015) 

are freely available from the International Soil Reference and Information Centre (ISRIC) 

Data Hub (https://data.isric.org/geonetwork/srv/eng/catalog.search#/home). While 

groundwater hydrology is far more complicated than a metric of depth to bedrock (Appels 

et al. 2015; Gabrielli et al. 2012; Hopp and McDonnell 2009), shallow bedrock has been 

the source of water exploitation for populations in other parts of the world (Brosnan et al. 

2018; Fishman et al. 2011). The geology of southwest Madagascar is largely sedimentary, 

with geologically recent deposits comprised of limestone, sand, and other alluvial soils 

(Brenan 1972; Douglass 2017).  

In order to evaluate the overall importance of first and second-order properties 

(e.g., Allee effect clustering on the archaeological record, as suggested by (Davis, 

Andriankaja, et al. 2020)), we use exploratory point pattern analyses and then build a 

series of PPMs. Archaeological survey data collected over the past several years by the 

Morombe Archaeological Project (MAP) (Douglass, Morales, et al. 2019) are used as the 

basis of knowledge about the archaeological record. Archaeological points were recorded 

as artifact clusters (comprised of a mix of materials including ceramic sherds, marine shell 

https://data.isric.org/geonetwork/srv/eng/catalog.search#/home
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tools, faunal remains, and charcoal) during survey of the  model reported in Chapter 4 

(Davis, Andriankaja, et al. 2020), and thus each point can represent multiple artifacts at a 

given location. If some data points represent a single artifact while others represent 

multiple artifacts, density calculations and the overall intensity of the point pattern can be 

affected. To ensure that spatial tests are not being skewed due to this fact, we ran all 

spatial tests twice, once by incorporating the total number of materials as a spatial weight, 

and once without weighting, to see if artifact counts had any spatial effects on the point 

pattern. Survey locations were chosen using a stratified random strategy and surveyors 

were not given information about the model’s predictions of site locations, in order to avoid 

survey bias. 

Point Process Modeling for First-Order Properties 

First, we explore first-order trends between the intensity of archaeological deposits 

in our study area and different covariates (i.e., environmental variables) using 

nonparametric smoothing (rho-hat function in the spatstat package) (Baddeley et al. 

2015). The rho-hat function plots the intensity of a point pattern as a function of a given 

covariate (Baddeley et al. 2015). In other words, the rho-hat function quantifies the degree 

to which the density of archaeological deposits is related to a specific variable (e.g., how 

archaeological deposits are accounted for by vegetation). 

Next, we investigate whether the settlement pattern in our study area exhibits 

significant degrees of clustering or dispersion (i.e., second-order interactions) by 

performing K-, G-, and pair correlation (PC) function tests on the archaeological point 

pattern. Each of these summary functions assesses the degree of clustering or dispersion 

in a point pattern but are somewhat distinct. The K-function (Ripley 1977) calculates the 

average number of points within a specified radius and is standardized by the intensity of 

those points (i.e., the number of points is divided by the total area encompassed by point 
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locations). The G-function calculates nearest neighbor distance distribution values for 

each data point (Baddeley et al. 2015). The PC function assesses whether a point-pattern 

is significantly more clustered or dispersed than expected for a random pattern, but is not 

cumulative like the other functions (Baddeley et al. 2015; Stoyan and Stoyan 1994).  

The significance of potential clustering or dispersion is assessed by comparing the 

empirical archaeological patterns to simulated realizations of a random null model. We 

assess the significance of second-order interaction in these functions using simulation 

envelopes of a null model of complete spatial randomness (CSR) with 39 Monte Carlo 

iterations (equivalent to p = 0.05). Significant clustering is inferred when the empirical 

function (i.e., the archaeological point pattern) is above the simulation envelope. Likewise, 

significant dispersion between points is inferred when the empirical function is below the 

simulation envelope. Areas of the empirical function within the envelope are consistent 

with CSR (i.e., not significantly different from a random pattern). 

Following these exploratory analyses of first- and second-order properties we 

develop a series of PPMs, following similar recent applications (Davis, DiNapoli, Sanger, 

et al. 2020; DiNapoli et al. 2019; Eve and Crema 2014). Our initial PPMs focus on 

modeling first-order trends and consist of: a homogenous Poisson model (which models 

the archaeological point pattern as a random process [i.e., CSR]), and two 

inhomogeneous Poisson models (which model the point pattern as a function of 

environmental covariates): the Chapter 4 (Davis, Andriankaja, et al. 2020) model and a 

new model combining all of the assessed environmental variables (see Table 5-1). We 

identify the best fitting model for the settlement pattern using multi-model selection tools, 

specifically the Akaike Information Criterion (AIC) and Bayesian Information Criterion 

(BIC) (Akaike 1974; Burnham and Anderson 2002; Schwarz 1978) and a stepwise 

selection procedure. These model selection tools evaluate how well a statistical model fits 
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a dataset given a tradeoff between model fit and overall complexity of the data (Burnham 

and Anderson 2002). The lower the difference in information criteria score (e.g., ΔAIC and 

ΔBIC) and the higher the weight (Wi), the better the model. Stepwise selection determines 

the best fitting model by evaluating how each covariate affects the fit of the overall model 

and dropping covariates if they result in a higher AIC or BIC score (Venables and Ripley 

2002).  

We assess the fit between the best-fitting models and the empirical data in multiple 

ways. We first evaluate the fit by calculating the raw and kernel-smoothed residual values 

of our best fitting model and the original model (Davis, Andriankaja, et al. 2020) to quantify 

any deviations between the first-order trend of the fitted model and the empirical data. In 

other words, the residuals illustrate the goodness-of-fit between the actual locations of 

archaeological deposits and the locations predicted by the PPM. Raw residuals estimate 

the bias within a model and kernel-smoothed residuals use a geographically weighted 

average of the residuals to account for spatial variance in the raw residual values 

(Baddeley et al. 2005).  

We then evaluate the second-order component of the best-fitting models using 

residual-K and G-functions. These functions assess the fit between the second-order 

component PPM and the empirical point pattern (i.e., archaeological material distributions) 

by comparing their K- and G-function estimates with a “compensator”, which is an estimate 

of the mean value of the K- or G-function (Baddeley et al. 2011). In simpler terms, residual 

K- and G-functions assess the goodness-of-fit between the predictions of a PPM and the 

archaeological data in terms of their interpoint relationships (i.e., clustering or dispersion 

between archaeological points). If the PPM is a good fit to the data, the residual-K and G-

functions should lie within the simulation envelope. If the empirical function lies above or 

below the simulation envelope, this suggests that the empirical pattern is more clustered 
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or dispersed than is accounted for in the model, respectively. In such cases of poor 

second-order fit, we can improve the models by explicitly including a second-order 

interaction clustering or dispersion parameter.   

GIS Analysis 

Next, using the model selection results of the best-fitting inhomogeneous model, 

we generate rasterized probability maps (i.e., a series of pixel values situated in 

geographic space that contain probability values) of places where archaeological sites are 

expected in ArcGIS 10.7 (ESRI 2020). Using raster maps, we evaluate the probability 

scores of different regions within the study area directly with locations of identified 

archaeological deposits. These maps, in turn, can be used to direct further ground surveys 

in Madagascar. We create different probability maps by assigning differential weights to 

each covariate in order of their relative importance. We determine differential weighted 

values for each covariate based on the rho-hat intensity functions and coefficient 

estimates from the best-fitting PPM. The greater the intensity measurement and the 

stronger the coefficient estimates, the greater that covariate’s effect on the archaeological 

point distribution. By evaluating the difference in intensity and coefficient estimates 

associated with each covariate we can establish orders of magnitude by which each 

covariate influences the resulting archaeological point pattern. These values can then be 

translated into associated rankings (or weights) for each variable.  

For example, in this study we are concerned with the relationship of covariates that 

explain intensities of archaeological deposits at different distances. As such, if we look at 

three different variables (A, B, and C) we can examine: 1) whether all three variables are 

negatively or positively correlated with archaeological points (i.e., as distance from each 

variable increases, does the number of archaeological materials decrease or increase, 

respectively) based on coefficient estimates; and 2) the intensity values of the 
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archaeological points that each variable accounts for based on the rho-hat function and 

fitted values of the model coefficients. For example, if variable A has a negative 

relationship with the archaeological point pattern that is three times as strong as variable 

B, and B is twice as negatively related with C, we can use this information as a guide to 

which variables are most important. Following evaluation of the fitted coefficients, if 

variable A accounts for 3-times the intensity of a point pattern at small-distances than B, 

and B accounts for 2-times the intensity of C, we can weight (or rank) variable A at three 

times that of B and B at twice that of C.  

We create different weighted rasters using the raster calculator tool in ArcGIS. 

Following the creation of these probability rasters, we assess each model by comparing 

surveyed locations from 2019 (which were used to test the model in Chapter 4 (Davis, 

Andriankaja, et al. 2020) with the probability values assigned by the model. If 

archaeological deposits are recorded in areas that were not predicted (or had low 

probability values) this indicates a poor fit for that predictive model. In contrast, if deposits 

are recorded in areas with high probability values, this indicates a better-fitting predictive 

model. The GIS analysis can be performed in open source platforms as well (e.g., QGIS 

(QGIS Development Team 2018)), and necessary code used for raster calculations is 

provided in a Supplemental R-markdown document (Appendix C; 

https://www.mdpi.com/2076-3263/10/8/287).  

Ethnographic data are also incorporated into weighting decisions when explicit 

information pertaining to the importance of resources is available. For example, 

ethnohistoric records indicate that coastal Vezo communities in southwest Madagascar 

place great importance on freshwater availability, access to coral reefs and fisheries, and 

that rock outcrops have served as a defensive strategy for hiding from foreign invaders 

(Douglass et al. In Preparation; Iida 2005; Koechlin 1975; Langley 2006). Marine and 

https://www.mdpi.com/2076-3263/10/8/287
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freshwater resource availability and defensability of the area are a common rationale for 

settling an area, and the lack of freshwater or defensability are most frequently referenced 

for why people move (Douglass et al. In Preparation). As such, results from the prior 

intensity metrics and coefficient estimates are compared with these ethnographic data, 

and where discrepancies arise (e.g., statistical tests suggest that marine resources are 

not strongly influencing archaeological points, but ethnohistoric records indicate a strong 

connection), favor is given to the ethnohistoric data.  

Before creating the new probability models in ArcGIS 10.7 (ESRI 2020), the depth 

to bedrock data is resampled using nearest neighbor interpolation from its original 250m 

resolution to a resolution of 10m to match the other datasets derived from Sentinel-2 

satellite imagery. We resample the dataset iteratively in ArcGIS 10.7 (ESRI 2020) using 

the resample tool to achieve the best results, from 250m to 10m.6 When not resampled, 

the inclusion of this data into raster calculations makes resulting datasets too coarse to 

direct meaningful ground investigations (Figure 5-3).  

 
6 Resampling was conducted four times, first from 250m to 150m, second from 150m to 75m, 

third from 75m to 35m, and fourth from 35m to 10m. 



 

110 

 

 

Figure 5-3: Map of unweighted predictive raster with and without re-sampling. Left: shows 

the unweighted predictive raster without resampling depth to bedrock data from 150m to 

10m. Right: shows the results of the unweighted predictive raster after resampling depth 

to bedrock data from 150m to 10m. Resampling makes the results more easily 

interpretable, and by extension, usable for archaeological survey. 

For all models, we take the inverse of the distances from all variables from any 

given point within the study area (except for bedrock, which is the depth not the distance). 

This follows the previous chapter’s (Davis, Andriankaja, et al. 2020) assumption (and the 

theoretical assumption of IFD) that the closer a point is to these variables the higher the 

likelihood of human occupation. 

Finally, the probability maps are evaluated against each other and the original 

model in Chapter 4 (Davis, Andriankaja, et al. 2020) to determine the most accurate 

predictive model for archaeological prospection. Accuracy is calculated based on the 

same 2019 surveys used to ground-truth the original model (see Davis, Andriankaja, et al. 

2020). In all surveyed regions we calculate the probability value assigned by each raster. 
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Because each raster provides only the probability of archaeological materials, and not a 

definitive “yes” or “no” to the presence of cultural deposits, we used a natural breaks 

method (Jenks 1967) to define “true” or “false” negatives and positives based on the 

threshold between “high”, “medium”, and “low” probability locations.  “True positives” are 

considered as all surveyed locations identified as having “high” likelihood of containing 

archaeological deposits that did indeed contain artifacts while “false positives” are all 

surveyed areas identified as “high” likelihood of containing archaeological materials that 

did not contain any artifacts. Medium and low likelihood areas are not included in these 

assessments because the algorithm expects that you might find material, but you might 

not, thus it cannot be counted as a “true” positive or negative. All spatial analyses are 

conducted in R (R Core Team 2020) using the spatstat package (Baddeley et al. 2015) 

and the code is freely available (see Supplemental File). We also use MuMIn (Barton 

2019), maptools (Bivand and Lewin-Koh 2019), raster (Hijmans 2019), rgdal (Bivand et al. 

2019), rgeos (Bivand and Rundel 2019), sp (Bivand et al. 2013; Pebesma and Bivand 

2005), and MASS (Venables and Ripley 2002) packages. 

Point Process Modeling for Second-Order Properties 

 The best-performing weighted raster and the unweighted raster are imported into 

R and used to create two PPMs with these rasters as the sole covariates. The unweighted 

raster created in ArcGIS (representing the best-fitting model PPM3) is compared against 

the weighted model, rather than direct comparison with PPM3 to prevent issues in model 

selection resulting from differences in the number of covariates. A model with six 

covariates is inherently more complex than a model with one covariate, which can result 

in higher AIC/BIC scores for the more complex model.  

To assess whether the weighted model is a better fit to the data, we compare it 

with the unweighted PPM using the same multi-model selection approach detailed above 
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(Akaike 1974; Burnham and Anderson 2002; Schwarz 1978). We then assess second-

order interactions by building new models that include an Area Interaction process, which 

accounts for clustering or dispersion at multiple scales (Baddeley and van Lieshout 1995). 

For these area interaction models, the value of the irregular parameter r is selected by 

minimizing AIC. We construct three PPMs that add this second-order parameter to the 

original Davis et al. (Davis, Andriankaja, et al. 2020) model, the best-fitting unweighted 

model, and the best-fitting weighted model. Each of these new PPMs is compared to the 

other models without second-order properties using multi-model selection. If second-order 

processes are influencing the archaeological distributional pattern (as predicted by an 

Allee effect or IDD model), then we expect that the best fitting model will consist of both 

first-order properties (i.e., environmental variables) and second-order interactions (e.g., 

clustering). 

Results 

We first present the rho-hat intensity functions, which measure the first-order 

intensity of archaeological deposits in relation to specific environmental covariates. We 

examine these patterns using both weighted and unweighted datasets. Figures 5.4 and 

5.5 show that certain covariates have a greater effect on the intensity of the archaeological 

point pattern. Specifically, bedrock and rocky outcrops have the strongest negative 

relationship with the intensity of archaeological points (meaning that intensities are highest 

at lower distances), while the distance to the ocean, dunes, and vegetation values have a 

weaker negative intensity relationship with archaeological points. These relationships 

fluctuate, however, as marine resources seem to cycle between increased and decreased 

intensity over a distance of 250 m. When accounting for the number of artifacts present in 

each area using a spatial weight, both unweighted (Figure 5-4) and weighted (Figure 5-5) 
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results present very similar patterns. This suggests that the effects of different covariates 

are not strongly influenced by artifact count.  

 

Figure 5-4: First order intensity of archaeological deposits (per m2) as a function of 

different environmental variables using nonparametric smoothing (rho-hat test). Euclidian 

distance measurements were used for distance (m) calculations. 
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Figure 5-5: First order intensity of archaeological deposits (per m2) weighted by artifact 

counts as a function of different environmental variables using nonparametric smoothing 

(rho-hat test). Likewise to the unweighted rho-hat tests, bedrock, islands, and rock 

outcrops have the highest absolute intensity values, while dunes and vegetation have the 

lowest. 

Figure 5-6 shows the results of K-, G-, and PC-functions that test for second-order 

interactions in the archaeological data. All tests indicate significant clustering between 

points (p = 0.05). To determine whether spatial intensity is influenced by the amount of 

material present in a location, we also run these tests using artifact counts as a weighting 

factor. The results appear identical between weighted and unweighted tests (using artifact 
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counts as a weight), suggesting that population weights are not significantly influencing 

the results (also see Supplemental File). As such, we proceed with PPMs that weight each 

point evenly in terms of artifact counts. 

 

Figure 5-6: Results of testing for second-order interaction using K-, G-, and PC-functions 

compared to 39 simulated realizations of CSR. Black line is the empirical function for 

archaeological deposits, the red-dashed lines is the theoretical expectation under the null 

model of CSR, the grey shaded region is the simulation envelope (equivalent to p = 0.05).  

Point Process Modeling of First-Order Properties 

Table 5-2 shows the results of comparing different inhomogeneous Poisson PPMs. 

The multi-model selection resulted in mixed results, with AIC indicating PPM3 and BIC 

indicating PPM4 were the best fitting models. The difference between PPM3 and PPM4 

is the inclusion of vegetation in PPM4. To decide on the best fitting model, we assessed 

the relative fit of PPM3 and PPM4 with PPM1 (the original Davis et al. (Davis, Andriankaja, 

et al. 2020) model) using residual plots (Figure 5-7). We find that PPM3 and PPM4 are 

very similar, and both are better models for archaeological settlement distribution than the 

Davis et al. (Davis, Andriankaja, et al. 2020) model in terms of first-order properties.  

Table 5-2: Results of comparing the different inhomogeneous Poisson point process 

models using ΔAIC, ΔBIC, and their associated weights. PPM3 and PPM4 were the best 

fitting models according to stepwise model selection using BIC and AIC, respectively. We 
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chose PPM3 (bold text) because it is the simpler of the two models  PPM1 (italicized) 

represents the Davis et al. (Davis, Andriankaja, et al. 2020) model. Df = degrees of 

freedom; Wi = information criterion weight value. 

Model Variables Df ΔAIC Wi ΔBIC Wi 

PPM3 coral, water, islands, 

rocky shoreline, depth to 

bedrock 

6 1.13 0.256 0  0.848 

PPM4 vegetation, coral, water, 

islands, rocky shoreline, 

depth to bedrock 

7 0 0.452 3.55 0.143 

PPM2 vegetation, dunes, coral, 

water, islands, rocky 

shoreline, depth to bedrock 

8 0.88 0.292 9.12       0.009 

PPM1 vegetation, dunes, coral, 

water, islands 

6 3486.97   0 3485.8

4   

0 

PPM0 Complete spatial 

randomness (Poisson 

Process) 

1 6074.78 0 6050.2

0   

0 
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Figure 5-7: Map of raw and kernel-smoothed Pearson residual values of PPM3, PPM4, 

and PPM1. Note that the smoothed Pearson residuals for PPM3 and PPM4 contain 

more values of 0 (indicating a better fit), while PPM1 has more values greater than and 

less than 0, indicating more over- and under-fitting. Archaeological points are overlaid on 

top of the raw residual maps (black dots). 

Finally, we assess PPM3 and PPM4 with PPM1 in terms of second-order 

properties using residual K- and G-functions. Figure 5-8 shows that both PPM3 and PPM4 

are negligible in their difference and both perform better (i.e., are a better fit to the 
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archaeological data) than PPM1. Nonetheless, both PPM3 and PPM4 underestimate 

second-order clustering in the data. As such, we chose PPM3 because it is a simpler 

model (BIC selection chooses the simplest best performing model), we proceed with 

PPM3 with a ΔAIC=1.13 and Wi=0.256 and ΔBIC=0 and Wi = 0.848. Table 5-3 shows the 

covariate estimates for PPM3.  

Table 5-3: Results of the chosen best fitting model (PPM3), including the parameter 

estimates and standard errors with a 95% confidence interval for each covariate. S.E. = 

standard error. CI95 = 95% confidence interval. 

 Estimate S.E. CI95 low CI95 hi Ztest Zval 

Intercept -10.3513  0.24798 -10.8373  
-

9.865255 
<0.0001 -41.7427 

Coral   -0.0118 0.00133 -0.014358 -0.0092 <0.0001 -8.8633 

Water/Ocean      0.0112 0.001354 0.008508 0.0138 <0.0001 8.2433 

Offshore 

Islands    
0.0043 0.000952 0.002429 0.0062 <0.0001 4.5132 

Rocky 

outcrops  
-0.0004 0.000061 -0.000504 -0.0003 <0.0001 -6.3179 

Depth to 

Bedrock 
-0.0205 0.001075 -0.022596 -0.0184 <0.0001 -19.0557 
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Figure 5-8: Results of the residual K- and G-function tests on PPM1 (the Davis, 

Andriankaja, et al. (2020) model) and best fitted models PPM3 and PPM4. Both PPM3 

and PPM4 perform better than the Davis et al. algorithm, but still overestimate clustering 

between points at some distances. 

GIS Analysis 

We re-create the exact PPM developed in R (PPM2) in ArcGIS, where all variables 

are evenly weighted. The following formula (1) is used in the raster calculator to create the 

Unweighted Model: 

        (1) 
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Where Parch = the archaeological probability value, DpthBR = depth to bedrock, DRO = 

distance to rock outcrops, Di = distance to offshore islands, Dw = distance to water/ocean, 

Dc = distance to coral.  

Next, we create a predictive raster with weights for each of the variables (see Table 

5-4). Because the unweighted raster produced fewer true positives than the original Davis 

et al. (Davis, Andriankaja, et al. 2020) model, we turn to ethnohistoric records and 

reincorporate paleodunes and vegetation (measured by SAVI), which are known to be 

important for defense and terrestrial resource acquisition (Koechlin 1975; Langley 2006; 

Yount et al. 2001). Paleodunes were ranked the lowest by coefficient estimation and rho-

hat intensity metrics, and so we weighted all variables based on their relative difference in 

intensity and coefficient estimates compared to dunes (the lowest ranking variable). As 

such, paleodunes were weighted at 1, and bedrock was 2.5 (because its coefficient 

estimates are strongest and rho-hat estimations show that the maximum intensity of 

bedrock is 2.5-3 times greater than that of paleodunes).  

We find that Weighted Model 3 (which has differentially weighted variables) yields 

more true positive detections than the unweighted model (PPM4) and the original Davis 

et al. (Davis, Andriankaja, et al. 2020) model (Table 5-4). We also find that by increasing 

paleodune weights (Weighted Model 4) the results do not change in terms of overall true 

and false positive detections when compared to Weighted Model 3.  

We also assess the quantitative raster probability values assigned at each location 

of recorded archaeological deposits (n=1030) to assess how well individual materials are 

predicted by the model. The better the model performs, the higher the probability values 

will be at locations of archaeological deposits. Table 5-5 shows that Weighted Models 1 

and 3 achieve the highest predicted values in known locations of archaeological activity, 

and therefore perform best.  
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Finally, we create a PPM using Weighted Model 3 as the sole covariate. Model 

selection indicates that the weighted model is a better fit than the best-fitting unweighted 

model (PPM3; Table 5-6). We use Weighted Model 3 because it resulted in the greatest 

number of true positives when assessing 2019 survey results and had the highest average 

point values (see Tables 5-4 and 5-5). Nonetheless, second-order properties are excluded 

from this model, and exploratory analysis indicates that second-order properties are 

influencing the point pattern (Figure 5-6). 

Point Process Modeling of Second-Order Properties 

Adding a second-order area interaction process into the models produces a 

substantially better fit (Table 4-6). The best-fitting model combines Weighted Model 3 with 

an area interaction component (PPM8), with ΔAIC and ΔBIC of 0 and wi of 1. The 

unweighted model with area interaction (PPM7) is worse at predicting archaeological 

patterns than PPM8, with ΔAIC and ΔBIC of >500 and wi of 0. Weighted Model 3 without 

area interaction (PPM5) performs substantially worse than PPM8, with with ΔAIC and 

ΔBIC of >2300 and wi of 0. The residual K-function indicates that the best fitting model 

(PPM8) still underestimates second-order clustering at distances ≥1500 m (Figure 5-9).   



 

 

 

Table 5-4: The formulas and respective covariate weights for each predictive model and the results of ground tested results in relation to each 

modified algorithm. The best performing model (bolded) produces the most true positives and highest overall values in areas with confirmed 

archaeological deposits (Table 5-5). Dv = distance to vegetation (measured by SAVI), and Dd = distance to paleodunes. 

Algorithm Formula 
True 
Positive 
(#)1 

False 
Positive 
(#)1 

# Artifacts 
(High 
Prob.) 

#Artifact
s 
(Medium 
Prob.) 

# 
Artifacts 
(Low 
Prob.) 

Davis et al. 
(Davis, 
Andriankaja, et 
al. 2020) 

 

29 7 654 332 141 

Unweighted 
Model 

 

28 3 886 102 160 

Weighted Model 
1 

 

31 7 955 144 49 

Weighted Model 
2 

 

23 2 813 136 199 

Weighted Model 
3 

 

32 7 957 138 53 

Weighted Model 
4 

 

32 7 957 138 53 

1 True and false positives are based on “high” probability values (i.e., where the algorithm expects the most material to be found). Medium and low probability values 

are not considered in these calculations (i.e., the algorithm expects that you might find material, but you might not, thus it cannot be counted as a “true” positive or 

negative). Qualitative probability scores were derived from a natural breaks method (Jenks 1967) on the generated quantitative values.



 

123 

 

Table 5-5: Descriptive statistical values for raster probability values at known 

archaeological deposit locations (n=1030) for each created predictive model. 

Model Total Average Median Mode Standard 

Error 

Unweighted 0.00924 0.00243 0.00038 0.00024 

Weighted 1 0.04769 0.03150 0.01762 0.001486 

Weighted 2 0.03182 0.01487 0.00106 0.000992 

Weighted 3 0.04769 0.03150 0.01762 0.001486 

Weighted 4 0.04467 0.03148 0.01762 0.001392 

Weighted 5 0.02545 0.01189 0.00085 0.000793 

 

Table 5-6: Results of comparing 6 PPMs using ΔAIC, ΔBIC, and their associated weights. 

Four PPMs  (5, 6, 7, and 8) are comprised of predictive rasters created in ArcGIS. The 

other two (PPM0 and PPM9) represent CSR and area interaction processes without 

environmental covariates. The weighted model with area interaction (a second-order 

property) performs better than all other models. Df = degrees of freedom; Wi = information 

criterion weight value. 

Model Variables Df ΔAIC Wi ΔBIC Wi 

PPM8 Area interaction, Weighted 

Model 3* 

3 0 1 0 1 

PPM7 Area interaction, 

Unweighted Model**  

3 507.96 0 508.12 0 

PPM5 Weighted Model 3* 2 2376.92 0 2371.23       0 

PPM6 Unweighted Model Raster** 2 3230.97       0 3225.28       0 

PPM9 Area interaction, CSR 2 7632.29 0 7627.76       0 

PPM0 Complete Spatial 

Randomness (CSR) 

1 13174.52       0 13164.1

4       

0 

* Raster composed of the following variables (weight in parentheses): Bedrock (w = 2.5), rocky 

outcrops (w = 2), vegetation (SAVI) (w = 1.75), islands (w = 1.5), coral (w = 1.5), ocean (w = 1), 

paleodunes (w = 2). 

** Raster composed of the following variables: coral, water, islands, rocky shoreline, depth to 

bedrock.  
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Figure 5-9: Residual K-function test of the best-fitting unweighted PPM with an area 

interaction parameter and the best-fitting weighted PPM with an area interaction 

parameter. Both models performed better with area interaction than without, and the 

weighted model yields the best results. 

Discussion 

Results of the exploratory analyses indicate that certain environmental variables 

(e.g., depth to bedrock and rocky outcrops) are strongly influencing the intensity of the 

archaeological point pattern (i.e., the distributional pattern of past populations) and that 

second-order clustering is also contributing to the distributional patterns of archaeological 

deposits. K- and G-tests show clustering at distances up to 800 m while the PC-function 

indicates clustering up to 100 m. This suggests that there may be multiple scales of 

clustering.  

The PPMs demonstrate that the inclusion of variables related to freshwater and 

defensive strategies (i.e., depth to bedrock and rocky outcrops) improve the Davis et al. 

(Davis, Andriankaja, et al. 2020) predictive model. Moreover, the incorporation of 

differential weights for environmental covariates (derived from exploratory spatial 

analyses and ethnohistoric records) results in a substantial improvement in the predictive 

accuracy. The weighted model yields more true positive results and is a better fit to the 

archaeological data (based on model selection criteria) than the unweighted model. This 

suggests that covariates do not equally influence “suitability” of locations in the study area. 
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Instead, freshwater resources and defendable areas are highly important, while vegetation 

appears less important for settlement choice. 

While these first-order models perform well, they underestimate the empirical 

distribution of archaeological deposits in some portion of the study region, suggesting the 

influence of some kind of second-order process on the settlement pattern. The addition of 

a second-order clustering process (i.e., area interaction) results in a substantial 

improvement to the models, decreasing model selection criteria values by thousands 

compared to models without second-order properties (Table 5-6). Combined with 

differential weights for environmental covariates, the settlement pattern in southwest 

Madagascar is best explained by environmental variables related to freshwater availability 

and defense, followed by marine resource access, and inter-point clustering between 

archaeological points at some scales (Figure 5-9).  

This conclusion fits well with ethnohistoric data for coastal Vezo communities in 

Southwest Madagascar (Astuti 1995; Iida 2005; Koechlin 1975; Langley 2006) and 

provides further support of an Allee-effect distribution (as suggested by (Davis, 

Andriankaja, et al. 2020)). Thus, we find that PPMs—and second-order properties 

specifically—are critical for developing and refining predictive models for landscape-scale 

archaeological research in this area. Nevertheless, the best fitting model is still not a 

perfect explanation for settlement patterns in this area, as the residual K-function shows 

higher rates of clustering between points at distances of ≥ 1500 m. This suggests that 

some additional factor (e.g., land governance, kinship or social networks, etc.) not 

accounted for by the best-fitting model is causing aggregation in archaeological materials 

at distances greater than 1500 m. One possibility is that foraging took place by some 

communities at larger distances from a primary residence, which has been demonstrated 

ethnographically in this region (Iida 2005; Koechlin 1975). 
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Our results also contribute, more specifically, to the interpretation of Madagascar’s 

archaeological record. Results in Table 5-4 suggest that archaeological settlement 

conforms to an ideal-free distribution (either IFD or IFD-Allee) based on the proportion of 

artifacts recovered from high suitability areas relative to medium and low suitability 

locations. This supports similar conclusions by Davis et al. (Davis, Andriankaja, et al. 

2020). The IFD predicts that as population densities increase in a given habitat, the overall 

resource quality in that region will decrease (Fretwell and Lucas 1969). This degraded 

habitat quality, in turn, lowers the suitability of the area for future populations.  

In Chapter 4 (Davis, Andriankaja, et al. 2020) we found correspondence between 

the archaeological settlement of the study region and an alternative model known as IFD-

Allee. This model predicts that individuals sometimes benefit by settling less suitable 

habitats, either socially by attracting others to follow (which offsets predation and 

increases chances of group survival), or ecologically due to an economy of scale by 

modifying the surrounding area to increase its resource abundance (e.g., agriculture) 

(Angulo et al. 2018; Bliege Bird et al. 2020; Winterhalder et al. 2010). In an IFD-Allee 

distribution, population density can decrease in higher suitability locations and increase in 

mid-level suitability areas (Winterhalder et al. 2010). Assuming that the same distribution 

of artifacts throughout the landscape exists as documented in Davis et al. (Davis, 

Andriankaja, et al. 2020) (i.e., a possible IFD-Allee), a much greater number of materials 

and archaeological deposits should be detected when applying the predictive model(s) 

developed here to new surveys in this area. This in turn will help to record at-risk cultural 

heritage along the coasts of Madagascar, and better understand the archaeology of 

coastal populations in this region. While our case study focuses on coastal Madagascar, 

our approach can be applied to other areas as well, as long as the particular covariates 

included in the model are adjusted for these new contexts.  
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In terms of the local populations within the study region, there may be very different 

settlement patterns that our current models do not capture. For example, the new 

unweighted model (PPM6) suggests that inland dwelling groups may prioritize different 

resources, creating a series of “higher” suitability zones in areas currently ranked as “low” 

suitability. This is evidenced by the drop in artifact counts in “medium” probability areas 

and an increase in artifact counts in “low” probability areas (Table 5-4). This could also be 

evidence of resource control by certain populations, forcing larger populations into less 

suitable locations (e.g., IDD (Bell and Winterhalder 2014; Jazwa et al. 2017; Summers 

2005).  

Additionally, it has been suggested that where subsistence strategies change, 

environmental proxies for habitat suitability will require modification (Plekhov and Levine 

2020; Vernon et al. 2020b). This is because the variables associated with “suitability” (and 

their relative importance) change as subsistence strategies shift (e.g., fishing communities 

will value marine resources more than pastoralists living inland [e.g., (Iida 2005; Koechlin 

1975; Yount et al. 2001)]. As such, the differential weights of covariates within a model 

are likely different across time and space and between scales of interaction. Because the 

southwest of Madagascar contains a diverse range of foraging strategies (Iida 2005; 

Langley 2006; Tucker et al. 2010; Yount et al. 2001), this pattern of artifact counts based 

on suitability could reflect the varied subsistence base in this region (and by extension the 

fluidity of how “suitability” is defined). This may help explain why the best fitting model 

(PPM8) still underestimates clustering at larger distances: other local contexts may differ 

significantly from the overall regional pattern because of fundamental differences in their 

social or subsistence strategies. 

Therefore, defining what constitutes a “suitable” or “unsuitable” location for 

settlement requires additional information. One important way this can be achieved is by 
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engaging with local histories and ethnographic research (e.g., Douglass, Morales, et al. 

2019; Gallivan et al. 2011; Green et al. 2003; Moser et al. 2002). Our current project 

provides a good illustration of how such anthropological research methods can improve 

our knowledge of the past by integrating local knowledge, human behavioral ecology, and 

spatially explicit modeling approaches. Additionally, such strategies permit for studies of 

human-environment interaction that go beyond correlation, whereby formalized 

hypotheses are tested to evaluate associations between different variables (Contreras 

2016; Davis 2020a; DiNapoli et al. 2019; Eve and Crema 2014; d’Alpoim Guedes et al. 

2016). 

One limitation of our study is that our model uses modern environmental data and 

does not currently include paleoenvironmental information. Numerous studies have 

demonstrated that environmental and climate conditions have fluctuated in Madagascar 

over the past several-thousand years (Burney 1999; Godfrey et al. 2019; Hixon et al. 2018; 

Virah-Sawmy et al. 2010). As such, some of our variables (i.e., depth to bedrock), are 

likely to have been quite similar several thousand years ago while others (i.e., vegetative 

index values, paleodune features) were potentially quite different. Paleodunes contain 

many archaeological deposits, today, and so they are a direct proxy for past cultural 

activity, but vegetative health is potentially more problematic. Future work should thus 

focus on better integration of paleoclimate proxies matching the temporal placement of 

the archaeological materials identified. In the meantime, however, our results still provide 

a successful method for improving detection rates of archaeological deposits, even in the 

absence of paleoenvironmental data. 

A second limitation is that we currently lack temporal information pertaining to the 

archaeological materials used for our analysis. Work is ongoing to acquire chronological 

data for these areas, but without this information we cannot extend our analysis to 
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investigating changes in resource use over time. This will form the basis of our future work. 

Currently, we can specify that some of the earliest archaeological deposits in this region 

(that have associated radiocarbon data) date to ~2000-3000 B.P. (Douglass 2016). More 

information is needed, however, to fully understand settlement chronologies of this region. 

A final limitation is that we make no distinctions between artifact classes within the 

point pattern. Different artifact types (e.g., ceramics versus shell tools) may alter the best 

fitting PPM and provide insight into how specific activities differ across the study area. In 

the same vein, differences in site function (e.g., permanent settlement, seasonal foraging 

camp, etc.) will likely affect results of spatial analyses, as peoples’ considerations will differ 

based upon the nature of what they plan to do (and how long they plan to stay) in a given 

location. Despite these limitations, the method presented here proves useful for planning 

fieldwork with respect to choosing areas for archaeological survey. Furthermore, our study 

provides a template of how predictive modeling and landscape archaeology can be 

improved using an iterative process of investigating the past. 

Conclusions 

Predictive modeling in archaeology has a long history, and has resulted in great 

improvements in archaeological settlement studies around the world (Altschul 1988; 

Green 1973; Hamer et al. 2019; Jochim 1976; Judge and Sebastian 1988; Kvamme 1983; 

van Leusen et al. 2005; Parker 1985; Plog and Hill 1971). Spatial statistical models can 

improve predictive algorithms and aid in survey projects, whereby the most probable 

locations for discovering archaeological deposits can be targeted. PPMs are one such 

spatial method that can substantially improve predictive modeling efforts for 

archaeological fieldwork given their ability to more fully characterize the fundamental 

properties of point patterns. 
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Our results led to the creation of several new archaeological predictive models, 

some of which resulted in a reduction of false positives during field assessment. 

Depending upon the purpose of the research, these models may be preferred. Aerial 

recording of Madagascar’s archaeological landscape remains limited, and this results in 

researchers not having a firm understanding of where many archaeological materials are 

located (Davis, Andriankaja, et al. 2020). For this reason, we chose the model that resulted 

in the greatest number of true positives. It stands to reason that a few more false 

detections are a good tradeoff for a large increase in true detections when the goal is to 

detect as many new cultural materials as possible. In other research programs it very well 

might be more beneficial to reduce false positives at the expense of true positives, as false 

positives and negatives can assist in re-evaluating prior hypotheses pertaining to 

archaeological settlement patterns. Given the nature of our analysis, however, evaluating 

false negatives is difficult, as there are no definitive locations where the model predicts a 

total absence of archaeological materials. Nonetheless, researchers who utilize this 

method (or similar approaches) should investigate “low” probability locations with the 

same rigor as “high” probability areas to ensure that surveys are not biased based on 

initial model assumptions, which, as we demonstrate here, sometimes require 

adjustments. 

Our study also demonstrates how the importance of different variables can be 

incorporated as weights within a predictive model using the results of spatial modeling 

procedures. By integrating ethnohistoric data with statistical model-selection, we improve 

our understanding of what constitutes a “suitable” environment (sensu HBE expectations 

from an IFD model) and increase the number of true positive identifications of 

archaeological materials during fieldwork. As such, we argue that archaeological survey 

procedures can be greatly enhanced by replicating the methods developed here. To 
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facilitate this, all code required for performing the necessary spatial statistical tests are 

provided as supplemental files.  

Ultimately, this study can serve as a template for future settlement pattern 

analyses using an iterative archaeological assessment. We combine robust statistical 

analyses, landscape scale data (via remote sensing), and traditional knowledge with 

explicit theoretical frameworks to account for fundamental aspects of archaeological 

settlement distributions. The use of PPMs allows researchers to investigate important 

second-order properties that are often ignored by other predictive modeling efforts. The 

procedure we advocate here (Figure 5-2) allows for a continuous learning process 

whereby archaeologists can evaluate different hypotheses and subsequently refine those 

hypotheses to improve our understanding of the past. We hope that future archaeologists 

find this process useful for framing future landscape scale studies of past human behavior.  

Note: Supplemental files for this chapter are available in Appendix C and at: 

https://doi.org/10.3390/geosciences10080287.   

https://doi.org/10.3390/geosciences10080287
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Chapter 6: Remote Sensing Reveals Lasting Legacies of Land-Use by 

Small-Scale Communities in the southwestern Indian Ocean7 

Among archaeologists, the identification and quantification of feedbacks between past 

human activities and landscape-scale transformations have historically focused on 

economies of scale that generate highly visible changes to landscapes (e.g., monumental 

architecture, intensive agriculture, shifts from forests to grasslands, etc.). In contrast, 

activities associated with small-scale mobile foraging economies have generally been 

portrayed as “low impact” (Smith 2001; Stephens et al. 2019). In regions around the world, 

like the Amazon, this line of thought has been compounded by legacies of settler 

colonialism and the processes of industrialization of land and resource use, resulting in 

narratives that downplay, obscure, or erase earlier (and subtler) traces of human 

landscape use (Douglass and Cooper 2020; Heckenberger and Neves 2009). Uses of 

remote sensing technology (i.e., satellite images) in such contexts have successfully 

identified these “low-impact” signatures of human action on large geographic scales 

(Lombardo and Prümers 2010). While predictive models have been used around the world 

to narrow the search for ephemeral archaeological deposits (Davis, Andriankaja, et al. 

2020; Kirk et al. 2016; McMichael et al. 2014), the use of automated remote sensing in 

archaeology remains skewed toward landscape modifications that are easy to identify 

because of their lasting marks and effects (Davis 2021; Tarolli et al. 2019).  

Prior remote sensing analyses on Madagascar have focused on the drivers of 

settlement and mobility (e.g., resource availability and social aggregation) using predictive 

models based on satellite-derived environmental information and statistical modeling 

(Davis et al. 2020; Davis, DiNapoli, and Douglass 2020). To fully understand settlement 

 
7 Davis, D. S., & Douglass, K. (2021). Remote Sensing Reveals Lasting Legacies of Land-Use by 

Small-Scale Communities in the southwestern Indian Ocean. Frontiers in Ecology and Evolution, 

9, 689399. DOI: 10.3389/fevo.2021.689399. 

https://doi.org/10.3389/fevo.2021.689399
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patterns, however, we must also look at the ecological effects of human occupation 

(Figure 6-1). Therefore, in this paper, we focus on identifying and characterizing legacies 

of forager activities and coastal settlement on the landscape of the Velondriake Marine 

Protected Area of southwest Madagascar, a region with a history of coastal foraging that 

extends back at least to 2000 cal. year BP (Figure 6-2; Douglass et al. 2019). The climate 

of southwest of Madagascar is defined by a wet season and a dry season. The region is 

extremely arid, receiving less than 50cm of rainfall annually, and is home to highly endemic 

flora and fauna which varies according to the underlying geology (Douglass and Zinke 

2015). The Velondriake region sits on a Quaternary dune system composed of sandy-

shell and limestone coastal rock outcrops, while further inland the geology is characterized 

by Pleistocene and Eocene geological systems (Besairie 1964). Vegetation in Velondriake 

is largely xerophytic and classified as a “spiny thicket” ecoregion, which contains some of 

the highest levels of endemic flora on the island (Gautier and Goodman 2003). The people 

living in coastal Velondriake today primarily identify as Vezo (roughly translated as “to 

paddle”) and center their livelihood on the sea (Astuti 1995). The area has been inhabited 

for thousands of years by communities practicing foraging and fishing, as well as 

agropastoralism over the past several hundred years (Douglass et al. 2018; Hixon, 

Douglass, et al. 2021).   
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Figure 6-1: Illustrates the methodological workflow presented in this article. The central 

question of human settlement and mobility patterns is investigated in Chapter’s 1 and 2 

(Davis et al. 2020; Davis, DiNapoli, and Douglass 2020) as a consequence of resource 

availability and social aggregation. The results of this prior work feed directly into this 

article, and vis versa (indicated by dashed arrow). Within this paper we evaluate whether 

we can distinguish between archaeological and non-archaeological areas recorded in our 

previous work based on spectral properties (including vegetative indices). Then, we use 

these results to train a machine learning classifier to quantify the extent of anthropogenic 

impacts. 

In this article, we investigate whether the ancient communities inhabiting the 

Velondriake region in southwest Madagascar significantly modified their landscape in 

ways that persist into the present. Specifically, we hypothesize that lasting changes in 

vegetative communities and soil chemistry are legacies of fitness-enhancing activities that 
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have landscape-scale effects. We further demonstrate that these legacies can be 

systematically characterized using remote sensing and machine learning techniques. 

Machine learning, specifically probability-based methods (e.g., Breiman 2001; Malley et 

al. 2012), allow us to systematically evaluate the likelihood of anthropogenic disturbance 

across large geographic spaces based on the geophysical properties identified in remotely 

sensed data. We look at geophysical properties of vegetation and soil as a palimpsest 

resulting from movement, settlement, and resource use over thousands of years. We then 

compare these landscape signatures between locations with and without material culture 

surface scatters to assess cumulative anthropogenic effects on the landscape. Our 

expectation is that places where people settled or engaged in sustained land-use will 

exhibit significantly different patterns in vegetative and soil properties when compared to 

locations with no evidence of archaeological settlement. 

  

Figure 6-2: Map of the study region (white box). 
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While the exact timing of the initial peopling of Madagascar is hotly debated (e.g., 

Anderson et al. 2018; Douglass et al. 2019; Hansford et al. 2020; Mitchell 2020), coastal 

foraging has a long history on the island (e.g., Barret 1985; Douglass 2016; Douglass et 

al. 2018; Dewar et al. 2013; Rakotozafy 1996), and predates evidence for the introduction 

of farming and herding lifeways  (Domic et al. In Review; Godfrey et al. 2019; Hixon, 

Douglass, et al. 2021). The debate over Madagascar’s human settlement has been central 

to questions of anthropogenic impact on the island, notably via activities that may have 

contributed to the extinction of endemic fauna (Godfrey and Douglass in press). Theories 

regarding anthropogenic drivers of extinction include potential overhunting,  habitat 

modification, and forms of direct or indirect competition between endemic and introduced 

animals (Burney 1997, 1999; Dewar 1984, 1997; Godfrey et al. 2019; Hixon et al. 2018). 

Teasing apart drivers of extinction requires further clarification of anthropogenic landscape 

change, including in regions with long histories of foraging and the management of wild 

resources. Madagascar is also known for its long history of climatic variability (e.g., 

Douglass and Zinke 2015; Dewar and Richard 2007). As climate change impacts intensify 

today, studies of how past populations modified landscapes to mitigate the impacts of 

resource scarcity and climate variability are vital for promoting sustainability (Douglass 

and Cooper 2020; Douglass and Rasolondrainy 2021; Razanatsoa et al. in press). 

However, most archaeological sites that retain information about resource use and 

adaptation by early mobile communities of foragers and herders consist of ephemeral 

artifact surface scatters and are actively disappearing due to erosion and development 

(Davis, DiNapoli, and Douglass 2020; Parker Pearson 2010). Innovative approaches are 

thus particularly needed to clarify human-environment dynamics during the earliest 

phases of Madagascar’s human settlement and in regions vulnerable to loss or erosion of 

cultural landscapes. 
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Niche Construction and the Legacy of Land-Use Practices 

Anthropologists interested in the effects that humans have on their environment 

and the two-way feedbacks in socio-ecological systems have productively integrated 

Niche Construction Theory (NCT) (Fuentes 2016; Laland and O’Brien 2010; Zeder 2016). 

NCT, which stems from evolutionary biology, stresses that organisms actively modify the 

selective pressures in their environment in order to increase their fitness. In doing so, all 

organisms contribute to feedbacks that influence and alter the niches of other organisms 

that share those same spaces (Laland and O’Brien 2010; Odling-Smee, Laland, and 

Feldman 2003). It should be emphasized that many of the concepts of NCT borrow from 

related concepts previously described by evolutionary biologists (see Spengler 2021), 

such as environmental engineering (e.g., Jones, Lawton, and Shachak 1994; Jones et al. 

2010) – central to the work presented here. NCT has guided investigations of how “low 

impact” human activities create niches by altering the distribution and abundance of flora 

and fauna in ways that enhance human livelihoods (Rowley-Conwy and Layton 2011). 

Prior work shows that many such niche construction activities are identifiable through soil 

changes (Smith 2001) and alterations to vegetation (e.g., modification of trees) (Mobley 

and Eldridge 1992; Oliver 2007). Investigations of cultural landscapes further demonstrate 

how humans intentionally manipulate soil chemistry and vegetative growth patterns 

(Lightfoot et al. 2013). Such niche construction activities have landscape-scale effects that 

are difficult to assess using site-based approaches alone. Furthermore, taphonomic 

processes and other destructive forces can disproportionately affect the remains of 

ephemeral sites (i.e., foraging camps) and evidence for landscape management by “low 

impact” communities with high levels of mobility (Iovita et al. 2021; Smith 2001). 

Applications of NCT and related evolutionary frameworks to landscapes shaped by 

foraging economies have also revealed feedbacks between human use of fire, 

biodiversity, and resilience to climate change (Bliege Bird et al. 2008, 2020; Bliege Bird 
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and Bird 2020; Bird et al. 2016). This work demonstrates the vast spatial extent and 

persistence through time of legacies of landscape management by foragers, including 

through innovative use of historical aerial photographs that permit landscape-scale 

analysis of the effect of previous fire regimes on contemporary settlement and land-use 

patterns (Bliege Bird et al. 2020).  

Our paper aims to build on this previous work by combining archaeological 

satellite-based remote sensing and innovative computational automation approaches to 

reveal legacies of forager land-use in coastal Madagascar. Prior remote sensing studies 

of archaeological foraging societies (and recently paleoanthropological sites) have taken 

place around the world, and many have relied on unsupervised land-cover classifications 

and environmental proxies to narrow down survey areas to where ephemeral cultural 

deposits are likely to exist (Coelho, Anemone, and Carvalho 2021; Davis et al. 2020; 

Keeney and Hickey 2015; Lim et al. 2021). Here, we attempt to use multispectral satellite 

data to directly pinpoint ecological changes associated with archaeological activity. 

Innovating and expanding the use of approaches that can effectively reveal “low-impact” 

signatures of human-environment dynamics is critical for developing more holistic 

understandings of the contributions of diverse communities—including highly mobile 

foraging communities—to shaping landscapes (Crumley 1979).  

In leveraging NCT, we are also engaging principles of relocation and perturbation 

(Figure 6-3), wherein relocation refers to the movement of certain ideas and resources, 

and perturbation refers to the subsequent adaptation and changes to both human 

populations and environments over time (Odling-Smee, Laland, and Feldman 2003; 

Quintus and Cochrane 2018).  Signatures of a modified niche include changes to biotic, 

abiotic, and artifactual components of the environment, and must be related to intentional, 

non-random processes (Odling-Smee et al. 2013; also see Jones et al. 2010). In order for 
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remote sensing tools to identify niche construction, we must be able to recognize 

instances of both perturbation (to quantify landscape modifications, themselves) and 

relocation (to identify different kinds of niche construction and the potential movement of 

people across a landscape). Relocation and perturbation should be traceable via 

similarities in material culture between sites, but also via patterns in vegetative and soil 

properties; i.e., archaeological niche construction will display perturbations in the form of 

distinct geophysical characteristics related to vegetative and soil characteristics and these 

differences will be relocated as communities migrate between places.  
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Figure 6-3: Illustration of perturbation and relocation components of NCT. Each 

population (A – C) performs specific activities which create feedbacks (blue arrows) 

between themselves and their surrounding environments. This constitutes a cultural 

“niche”. Relocation is represented by the dashed arrows, in which people move throughout 

a landscape and take their practices with them. In addition, ideas and adaptations can be 

spread from one community to another (gray circles) when different groups overlap in time 

and space, leading to the adoption of new behaviors and the formation of new niches (A’ 

– C’).  

In this study, we focus primarily on perturbation effects. Relocation will be the focus 

of future work and will require a robust radiocarbon dataset to evaluate settlement 

chronologies and temporal shifts in settlement. Nonetheless, our present study has 
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ramifications for how archaeologists reconstruct and understand the impacts of foraging 

societies on a global scale, as the methods proposed here can be widely applied. It also 

contributes new insights into longstanding questions regarding the consequences of 

human colonization of the unique insular environments of the southwestern Indian Ocean, 

and Madagascar specifically. 

Methods 

Previous studies, using traditional ground-based and remote sensing survey (Davis, 

Andriankaja, et al. 2020; Davis, DiNapoli, and Douglass 2020; Douglass 2016), have 

expanded our understanding of Late Holocene (~3,000 cal year B.P.) settlements on 

Madagascar’s southwest coast. This work assessed whether settlement was affected by 

resource availability and used satellite-derived information about environmental factors 

(e.g., proximity to important resources) to generate a probability model to locate 

archaeological settlements. This work documented hundreds of new archaeological 

deposits and indicated that freshwater availability, marine resources, and defensibility are 

among the primary drivers of settlement choice and mobility in this region since the Late 

Holocene. Additionally, this work suggested the presence of Allee effects, or positive 

density dependence, wherein settlement actively modifies surrounding environments and 

results in =improvements to habitat suitability (Angulo et al. 2018; Fretwell and Lucas 

1969).  

In this paper, we are addressing whether ecological legacies of landscape 

modification exist and whether these constructed niches—primarily in the form of soil and 

vegetative properties—can allow us to predict ancient settlement locations and provide 

insight as to the extent of anthropogenic landscape modifications (Figure 6-1). In order to 

do this, we must first determine whether available satellite data have the spectral 

resolution needed to discern between known archaeological sites and places that do not 
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contain material culture deposits (Figure 6-1). We use high-resolution PlanetScope 

satellite imagery (Planet Team 2020) with 3m spatial resolution and multispectral 

capabilities to calculate vegetative productivity and soil moisture content in surveyed areas 

with known archaeological sites (n = 340). In total, we averaged 6 PlanetScope images 

taken between 2018 and 2020 during the wet and dry seasons to create a 3-year average 

of the study region (Appendix D Supplemental Table D-1). The years chosen experienced 

climatic conditions within the typical range for the region (Andavadoaka Monthly Climate 

Averages, n.d.). We supplemented PlanetScope images with multispectral bands 

available from Sentinel-2 to provide additional assessment of moisture retention properties 

of soils and vegetation (see below). We then compared these values with ground-tested 

locations without any evidence of archaeological materials based on absence of surface 

deposits (i.e., ceramics, shells, charcoal, etc.; n = 80). Sites in this region tend to feature 

single occupation horizons and relatively shallow cultural deposits that are typically 

indicated by the presence of surface scatters (Douglass 2016). All archaeological and 

non-archaeological datapoints were recorded during systematic survey operations 

between 2011 and 2020 (Chapter 4; Douglass 2016). 

Machine Learning Algorithm 

 

We used PlanetScope imagery and compiled 3-year averages for the dry and wet 

seasons between 2018 and 2020. Seasonal differences are extreme in this region (Jury 

2003), and thus we need to account for these variations and how they affect our ability to 

discern archaeological materials in satellite data. As such, we conducted a pixel-by-pixel 

comparison in R (R Core Team 2020) between the 3-year averaged PlanetScope images 

to highlight differences in environmental geophysical properties between the wet and dry 

season using the equation: 

 

∆𝑟 = 𝐷 − 𝑊 
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Where Δr = difference between images, D = the dry season image, and W = the wet 

season image. 

Next, we assessed the spectral characteristics of a sample of known 

archaeological (n = 340) and non-archaeological (n = 80) deposits throughout the study 

area to determine their degree of separability between different image bands. Some prior 

studies have chosen non-archaeological sites randomly, but here we used ground-tested 

locations to alleviate potential errors in sample creation (Sonnemann et al. 2017). We drew 

10m buffers around each data point and the average value for each band was calculated 

in R (R Core Team 2020). Then we statistically compared archaeological and non-

archaeological sites using different bands of PlanetScope imagery (see Supplemental 

Files).  

Next, we used Google Earth Engine (GEE; Gorelick et al. 2017), following Orengo 

et al. (2020), to train a random forest (RF) probability algorithm to identify archaeological 

deposits in southwest Madagascar. Because the archaeological deposits in this area are 

primarily ephemeral artifact scatters, high resolution data are required to attempt any sort 

of automated identification. We ran a RF probability algorithm using 128 trees and three 

iterations (which were deemed optimal for archaeological purposes by Orengo et al. 

(2020)) to locate artifact scatters (code can be found in the supplemental documents). The 

RF procedure outputs a raster of values ranging from 0-1, wherein 1 is a perfect match to 

an archaeological deposit. To evaluate accuracy and performance of this model, we 

withheld 40 archaeological points and 17 non-archaeological points (~12% of the training 

data) for validation. Then we calculated the precision (Equation 1), recall (Equation 2), 

and F1 (Equation 3) scores for the training and test data using thresholds of 0.60, 0.65, 

and 0.70. 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
               (1) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
               (2) 

 

𝐹1 =  
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                 (3) 

 

A perfect result would have precision, recall, and F1 scores of 1.  

 

Vegetative Indices 

To evaluate ecological signatures between archaeological and non-archaeological areas, 

we used vegetative indices, which are mathematical formulas that provide indications of 

biomass and plant health/stress. First, we measured vegetative productivity using 

normalized difference (NDVI) and soil adjusted (SAVI) vegetative indices (Jensen 2007). 

NDVI is calculated using the formula: 

 

𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
 

 

SAVI is calculated using the formula: 

 

𝑆𝐴𝑉𝐼 =  
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷 + 𝐿
∗ (1 + 𝐿) 

 

Where L is a soil adjustment factor. An optimal value for L has been demonstrated at 

L=0.5 and was used here (Huete 1988). 

NDVI is one of the most commonly employed vegetative indices and measures 

vegetation based on a ratio of reflectance values in the near infrared (NIR) and Red 

wavelengths. However, NDVI has accuracy issues when faced with ecologically and 

geologically heterogeneous areas and high soil reflectance. The SAVI is an adjusted 

version of NDVI which corrects for reflectance caused by soil diversity, making it useful 

for geographically expansive studies with high rates of ecological diversity (Huete 1988). 

Both NDVI and SAVI relay information pertaining to water absorption and retention in 
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vegetation. After calculating vegetative index values, we extracted the average values 

from a 20m buffer around each archaeological and non-archaeological datapoint used for 

training the RF algorithm (discussed above). Then we assessed the difference between 

archaeological and undisturbed locations using non-parametric tests of association (see 

supplemental file). We conducted all calculations in R v. 4.0.2 (R Core Team 2020) using 

the raster (Hijmans 2019) and rgdal (Bivand et al. 2019) packages. 

Next, we evaluated Sentinel-2 imagery, which contains short-wave infrared 

(SWIR) bands, in the same manner as described above. We compiled 5 years of Sentinel-

2 imagery by month using GEE (Gorelick et al. 2017; also see Supplemental Files). SWIR 

has increased sensitivity to moisture content and can be used to distinguish mineral 

compositions of soils (Davis 2017; Thabeng et al. 2020). One limitation of the Sentinel-2 

data is that it has much lower spatial resolution (20m). The only high-resolution SWIR 

satellite currently available is Maxar’s Worldview-3 satellite (which has shown promise for 

archaeological purposes, see Davis 2017). We did not have access to these particular 

data, however. To improve the utility of the Sentinel-2 SWIR, we used a pansharpening 

procedure – a form of data fusion whereby lower-spatial resolution imagery is enhanced 

using a higher-resolution dataset (Garzelli et al. 2004) – to resample the SWIR data from 

20m to 3m using PlanetScope imagery (see Appendix D Supplemental Figure D-1). Pan-

sharpening followed a principle-component analysis (PCA) method using the RStoolbox 

package in R (Leutner et al. 2019). PCA pansharpening is appropriate because 

PlanetScope imagery is spectrally compatible with Sentinel-2 sensors (Ichikawa and 

Wakamori 2018). 

Using this pansharpened SWIR data, we calculated a Normalized Difference 

Water Index (NDWI; Gao 1996), which is a vegetative index that reflects the biochemical 

metrics of plants (Sun et al. 2019). Such metrics can be used to distinguish different taxa, 

in addition to assessing the water content of leaves (Gao 1996; Sun et al. 2019). NDWI 
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uses the NIR and SWIR spectrum to measure the liquid water molecules contained within 

vegetative canopies (Gao 1996). It is calculated using the formula: 

 

𝑁𝐷𝑊𝐼 =  
𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅1

𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅1
 

 

Where NIR is the near-infrared band and SWIR1 corresponds to the first shortwave-

infrared band of Sentinel 2 (1610 nm).  

Finally, to assess the potential bias in our samples of archaeological and non-

archaeological points, we generated 1000 random points within the study area and 

compared vegetative index and SWIR reflectance values between them and our ground-

tested data (Appendix D Supplemental Figure D-2). If people have fundamentally changed 

the geophysical and/or geochemical properties of the landscape, we hypothesized earlier 

that the random locations will express different vegetative and soil properties than areas 

with archaeological surface scatters. Conversely, if people merely settled in areas with 

specific geochemical characteristics that are distributed throughout the landscape, 

random locations should show some similarities with archaeological areas. 

Spatial Analysis 

In order to quantify the impact of niche construction on different parts of the study area, 

we ran several spatial analyses to determine the amount of land area impacted by legacy 

effects and the distribution of niche construction activities across the landscape. 

Settlements in this region are non-randomly distributed (Davis, DiNapoli, and Douglass 

2020), as are niche construction activities more generally (Odling-Smee et al. 2013). Thus, 

anthropogenic niche construction on Madagascar should also be non-random, and likely 

clusters in particular places that have been used repeatedly over time. After assessing the 

results of the RF algorithm, the locations identified as archaeological sites with the 

threshold with the highest accuracy scores were converted to polygons. We calculated the 
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area of these polygons to generate an assessment of the extent of archaeological activity 

within the study region. Next, we analyzed the spatial distribution of these points using the 

Getis-Ord General G test to compare the distribution of areas identified as archaeological 

by the RF algorithm with random patterns (Getis and Ord 1992). Then we converted the 

polygons of anthropogenic locations into points and computed kernel density estimations 

for these locations. We conducted all spatial tests in in ArcGIS 10.7.1 (ESRI 2020). 

Results 

Assessments of training datasets and PlanetScope imagery resulted in clear distinctions 

between archaeological and non-archaeological points in all four electromagnetic bands 

(Blue, Green, Red, NIR; Figure 6-4b). The differences between the samples are also 

statistically significant (see code in Appendix D). The RF classifier was trained using 300 

archaeological points and 63 non-archaeological points and resulted in strong 

performance on both the training data and test data (see Table 6-1; Figure 6-4).  

Table 6-1: Accuracy assessment of random forest algorithm. 

Threshold Precision 

(Validation) 

Recall 

(Validation) 

F1 

(Validation) 

Precision 

(Training) 

Recall 

(Training) 

F1 

(Training) 

0.7 0.972 0.875 0.921 0.976 0.963 0.969 

0.65 0.973 0.900 0.935 0.977 0.973 0.975 

0.6 0.947 0.900 0.922 0.964 0.977  0.970 
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Figure 6-4: Results of RF algorithm (red) using a threshold of 0.7 compared with known 

archaeological deposits (yellow circles) and non-archaeological areas (green circles). B: 

Visualization of band separability between archaeological and non-archaeological training 

data. C: Close up of known archaeological and non-archaeological sites. All but one are 

correctly identified. D: Another area with anthropogenic activity (forest clearings indicated 

by arrows) and known archaeological sites. Imagery © 2020 Planet Labs. Inc. 

Analyses of annually averaged NDVI and SAVI show a significant difference (W = 

8639, p < 0.05) between vegetation in archaeological and non-archaeological contexts, 

where archaeological sites have higher mean vegetative index values than locations 

without archaeological activity (Figure 6-5; mean of -0.02 and -0.03, respectively). NDWI 

results show the same pattern (W = 8468, p-value = 0.042).  This suggests that 

archaeological sites exhibit vegetative index values that are distinct from non-
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archaeological areas. Furthermore, archaeological sites are noticeably different in their 

vegetative index value distribution from randomly generated points throughout the study 

region (see Appendix D Supplemental Figures. D2 – D5). 

 
Figure 6-5: Vegetation index values for archaeological and non-archaeological 

locations. NDVI and SAVI are annual averages over 3 years of PlanetScope imagery 

(Planet 2020). NDWI uses the annually averaged PlanetScope and Sentinel-2 SWIR 

bands. 

 

SWIR analysis indicates that there is a tendency for areas surrounding 

archaeological sites to have slightly higher reflectance values in the SWIR spectrum 

(SWIR1: W = 12713, p-value > 0.002; SWIR2: W = 11999, p-value = 0.024). Most 

archaeological deposits express higher reflectance in the SWIR spectrum, indicating 
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mineralogical differences and vegetation that might be distinct from surrounding non-

archaeological areas.  

Seasonally, we find that NDVI and SAVI values during the wet season, show a 

significant difference (W = 8282, p < 0.02) between vegetation in archaeological and non-

archaeological contexts, where archaeological sites have higher mean vegetative index 

values than locations without archaeological activity (mean of -0.005 and -0.008 

respectively; see Appendix D Supplemental Figure D-2). During the dry season, however, 

there is no significant difference (W = 10230, p = 0.925) between locations. 

Using the RF results with a threshold of 0.65, we calculated the area of all identified 

potential archaeological deposits within the study region. Approximately 38.6 km2 (~17%) 

of the study region exhibits differences in soil and vegetative properties which are likely 

linked to human activities. Spatial analyses demonstrate that anthropogenic areas are 

clustered and non-randomly distributed throughout the landscape (p > 0.0001; Appendix 

D Supplemental Figure D-6). The density of anthropogenic areas appears highest 3-5km 
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inland from the coast (Figure 6-6), where there are known to be an abundance of seasonal 

freshwater ponds.  

 

  
Figure 6-6: Density of anthropogenic modifications within the study region identified by 

the machine learning algorithm. Imagery © 2020 Planet Labs. Inc. 

 

Discussion & Conclusions 

The results of this analysis suggest that ancient coastal communities in southwest 

Madagascar – including highly mobile foraging and herding populations – have contributed 

to shaping the modern landscape in important ways. Our previous work contributed 

directly to this present study by allowing us to investigate settlement patterns and 

landscape change from two different, but complementary, angles. Our prior investigations 
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focused on the factors that influence settlement choice (e.g., resource availability and 

social cohesion), while this study focuses on the long-lasting, landscape-scale effects of 

settlement. In fact, prior work (Chapter’s 4 and 5) indicated the presence of Allee effects, 

which suggests that ancient communities actively modified their ecological surroundings 

in ways that increased the suitability of previously settled areas. Here, we used machine 

learning and vegetative indices to further investigate the possibility that Allee effects were 

present in coastal Madagascar and resulted in legacy effects via cultural niche 

construction. The results of this study largely complement earlier investigations, 

pinpointing specific areas that contain landscape modifications, many of which overlap 

with previous predictive modeling results (Figure 6-7). Archaeological deposits exhibit 

significantly different spectral characteristics when compared to non-archaeological 

locations. While the potential of multispectral and hyperspectral imagery has long been 

established for archaeology, the detection of scant artifact scatters is not the norm (c.f., 

Orengo and Garcia-Molsosa 2019). Rather, most literature focuses on the detection of 

highly visible landscape modifications, like architecture and remains of intensive 

agricultural activity  (e.g., Tarolli et al. 2019; also see Davis 2021). As such, this work 

suggests that the development of machine learning and cloud-based computational 

processing provides the ability to detect even the most ephemeral archaeological deposits 

and use these to reveal patterns of human activity and impact on the wider landscape. 
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Figure 6-7: Comparison between predictive modeling results of Davis, DiNapoli, and 

Douglass (2020) and this study. The previous study investigated settlement distribution 

via environmental and social drivers, while this study looked at long-term ecological effects 

of settlement activity. Notice that both models detect or predict archaeological activity in 

many of the same locations. The areas ranked with the highest likelihood by Davis, 

DiNapoli, and Douglass (2020) also contain some of the oldest recorded evidence of 

human occupation in this region (~2500-3000 cal year B.P.). 

Our analysis shows that the overall health and abundance of extant vegetation 

(defined by vegetative index scores) on and around archaeological deposits exhibits a 

statistically significant different when compared to areas lacking any archaeological 

materials. The exact difference is not clear, however, as assessments of median values 

suggest vegetative values are higher in non-archaeological locations while evaluations of 

mean values suggest that vegetative values are higher in archaeological locations. The 

contrast between these two averages may be indicative of the wide range of 
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environmental contexts within the study area and could suggest that non-archaeological 

localities exhibit wider range of environments while archaeological areas are more limited 

in their vegetative diversity. This, itself, could be the result of active settlement choices or 

the effects of human landscape modification. This hypothesis is supported by Figure 6-5, 

which shows a larger range of values among non-archaeological areas compared with 

archaeological locations.  

The difference in vegetative index scores is statistically significant in the wet 

season (p = 0.01). Additionally, the SWIR wavelength displays differences in the soils 

around archaeological sites and non-archaeological locations, suggesting that there are 

underlying differences in the mineralogical composition and moisture retention properties 

between areas with and without archaeological surface materials. NDWI index 

assessments further demonstrate that areas with archaeological materials have 

vegetation with different water retention properties than non-archaeological or random 

locations. This may signal healthier vegetation, overall, or might relate to the presence of 

introduced taxa that are not xerophytic and thus retain more water than endemic taxa. 

Because this region is arid and rainfall is highly variable (Jury 2003), even small increases 

in vegetation moisture content could have significant implications for human livelihoods 

and the biota that sustain them. This, coupled with spatial tests of identified archaeological 

deposits, indicates the presence of a distinctive human niche on Madagascar resulting 

from a variety of economic activities – ranging from foraging to pastoralism and agriculture 

– since the Late Holocene. The inland areas of the study area   may have been preferred 

by pastoralists who have been present for the past several hundred years (Parker Pearson 

2010), and the anthropogenic signatures found here may therefore reflect the activities of 

pastoral and foraging community activities. While the precise geochemical composition of 

soils requires further ground-based studies, human activity has likely played a role in 

changing these components of the landscape. 
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Some caution is necessary in interpreting these results, however. While it is 

possible that these distinctive differences between archaeological and non-archaeological 

locations are due to human activities (e.g., Storozum et al. 2021), it is also possible that 

these soils were inherently different prior to human occupation. Our prior work 

demonstrates that human settlement choice is not random in this region (Davis, 

Andriankaja, et al. 2020; Davis, DiNapoli, and Douglass 2020), and thus communities may 

have chosen areas already possessing specific soil and vegetation properties. To 

definitively establish the nature of human impact on soil chemistry, and to understand the 

feedbacks between soil and vegetation dynamics in this region, future studies will need to 

evaluate stratigraphic and geochemical changes in soil composition through time at 

archaeological and non-archaeological localities. This will involve ground-based survey as 

well as a program of radiometric dating to improve settlement chronologies. 

Nonetheless, based on this analysis, we can definitively state that archaeological 

deposits in southwest Madagascar have distinct geophysical and vegetation profiles 

compared with non-archaeological locations. Likewise, the difference in vegetation 

between archaeological and non-archaeological areas is inherently linked to the 

geochemical properties of these locations, as well as to modern ecological variables. 

Because the primary difference between our study locations is the presence or absence 

of archaeological deposits, vegetative differences are likely linked to human activity 

(Bennett et al. 2012; Lasaponara and Masini 2007). Furthermore, our results indicate that 

ephemeral archaeological deposits composed of artifact scatters can be distinguished 

from surrounding environments using high-resolution multispectral imagery and machine 

learning. Thus, we can conclude that underlying differences in geophysical properties of 

the landscape and vegetative composition are impacted by a legacy of human landscape 

use over the past several thousand years. The results presented here demonstrate that 

archaeological sites dated to as early as ca. 3000 cal year B.P. by Douglass (2016) are 



 

156 

 

identifiable based on their ecological impact. However, a robust settlement chronology for 

the study region is needed to investigate whether the age of archaeological deposits 

impacts their signature or detectability via multispectral remote sensing. 

More broadly, we demonstrate how a focus on areas with “low-impact” human 

activities can facilitate greater understanding of the extent of human occupation and land-

use on a landscape shaped by diverse socioeconomic systems and exhibiting an 

ephemeral archaeological record (Douglass and Zinke 2015; Parker Pearson 2010). The 

impacts of early communities of foragers on Madagascar’s diverse ecosystems is widely 

debated, but more evidence of the (in)direct effects of human settlement are needed  

(Davis, Andriankaja, et al. 2020; Domic et al. In Review; Douglass, Hixon, et al. 2019). 

The same can be said for many regions around the world where the availability and quality 

of archaeological data is lower for periods of time when foraging was the dominant 

livelihood strategy shaping landscapes (Stephens et al. 2019). By extending our focus to 

these understudied components we can re-evaluate and more fully appreciate the extent 

to which diverse peoples have modified the Earth’s environments.  

A shift in research attention toward understanding the environmental impacts of 

small-scale and mobile subsistence communities can also fundamentally change how we 

approach sustainability and conservation. One of anthropology’s longstanding goals has 

been to understand the dynamics between human and environmental systems (Davis 

2020; Steward 1955; Carneiro 1970; Steward and Setzler 1938). Long-term perspectives 

on human-environment dynamics offered by archaeology provide context for 

understanding contemporary land-use and sustainability issues. A goal of historical 

ecology and ecological anthropology is to derive lessons from these long-term 

perspectives and eco dynamics to inform present and future management decisions 

(Altschul et al. 2017, 2020; Rick and Sandweiss 2020). By viewing anthropogenic 

landscape modifications at multiple scales and levels of intensity, as well as via a range 
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of (in)direct impacts, we can improve our understanding of human niche construction in 

diverse societies, ranging from small-scale, mobile communities to large urban centers.  

This paper makes contributes to Malagasy archaeology by illuminating the scale 

and extent of human traces on the landscape, in a way that is time and cost-effective, 

allowing us to lay the critical foundation needed for further work on coupled human-natural 

systems. The archaeological data contained within this space has implications for our 

understanding of human niche construction on Malagasy landscapes over time. Beyond 

Madagascar, this study also holds importance for studying the ecological legacies of 

foraging societies and detecting ephemeral archaeological sites in semi-arid environments 

using high resolution satellite images and machine learning techniques.   

Note: Supplemental Files (including code) associated with this chapter are available in 

Appendix D and at Penn State’s ScholarSphere Repository: 

https://doi.org/10.26207/zmsr-tc92.  

  

https://doi.org/10.26207/zmsr-tc92
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Chapter 7: Evidence for extensive social networks as risk-mitigation 

strategies on Southwest Madagascar8 

 

As the contemporary climate crisis intensifies, understanding the interactions between 

climate and social network structure is increasingly important (Pisor and Jones 2021). 

Environmental archaeological research has long focused on identifying behavioral 

strategies that enhance human fitness in hypervariable climates (Davis 2020a; Dewar and 

Richard 2007b; Douglass and Rasolondrainy 2021; Petrie et al. 2017). Regions with long 

records of climatic change, like Madagascar, provide ideal opportunities to assess 

relationships between climate and shifts in social network structure (Pisor and Jones 

2021).  

Sociality and resilience in the face of external pressures 

Complex systems theory (CST) is a framework that has significant potential to address 

human-environmental systems relationships. CST is particularly adept at explaining 

dynamics at different scales of interaction between people, communities, and 

environmental/climatic events (Preiser et al. 2018). Using CST, researchers have 

evaluated multifaceted and interwoven relationships across diverse human and 

environmental systems (e.g., d’Alpoim Guedes et al. 2016; Penny et al. 2018). 

Network studies provide one way to investigate complex systems dynamics 

pertaining to social connectivity and resilience (Janssen et al. 2006). For example, using 

network analysis, Baggio et al. (2016) found that community resilience in the face of 

environmental stress was most closely related to cultural ties and key households within 

those cultural networks, but not (as the authors expected) to a decline in natural resources. 

 
8 Davis, D. S., Rasolondrainy, T., Manahira, G., Hixon, S. W., Andriankaja, V., Hubertine, L., Justome, R., 

Lahiniriko, F., Léonce, H., Roi, R., Victorian, F., Clovis, M. B. J., Voahirana, V., Carina, T. L., Yves, A. J., 

Chrisostome, Z. M., Manjakahery, B., & Douglass, K. (In Review). Evidence for extensive social networks 

as risk-mitigation strategies on Southwest Madagascar. Antiquity. 
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A network approach is particularly useful for archaeology because it: 1) defines the 

structure of social systems and their interactions with external forces; and 2) provides a 

semantically consistent manner by which interactions can be described (i.e., nodes and 

links); see Janssen 2006), which is pivotal for scientific research (sensu Davis 2020b).  

Studies of social networks during periods of stress indicate that external pressure 

(i.e., influences from outside of human social systems) can result in networks contracting 

and transforming to a structure of very close ties between a select few parties (Romero et 

al. 2019), rather than a reliance on “weak” ties (Granovetter 1973) that are often 

associated with intercommunity communication. However, different levels of connectivity 

come with their own sets of advantages and drawbacks, and the exact adaptive response 

of a network will vary based on its specific context (see Janssen et al. 2006). For instance, 

densely clustered networks often form as a risk-mitigation strategy (Pisor and Jones 

2021), but can also result in an “overconnected” system that is prone to collapse from 

changes at varying scales (Redman and Kinzig 2003; also see Mills et al. 2013). On Rapa 

Nui, for example, communities managed to thrive despite a paucity of land and natural 

resources by adopting a nested social structure that relied on different scales of interaction 

(Lipo et al. 2021).  

Centrality, or the structural importance of a given node within a broader network, 

is another useful measure of network connectivity. Networks with high centrality benefit 

from greater centralization and control, but are also disadvantaged from this centralization 

as it can create hierarchical concentrations of power. Furthermore, node removal from the 

network can destabilize the entire system (Janssen et al. 2006). Indeed, there are many 

instances of societies consciously preventing highly centralized network organization in 

favor of less-hierarchical social structures (Graeber and Wengrow 2021). In contrast, low 

connectivity makes the network more robust in the face of node removal and prevents 
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hierarchical power centralization, but comes at the cost of decreased control over 

connections.  

Past Social Networks in SW Madagascar 

Inferring past social interactions from archaeological remains can be challenging. 

Ceramics offer an invaluable source of information about social functions and connections 

(e.g., Braun 1983; David et al. 1988; Skibo et al. 1989). Among the many uses for ceramic 

materials is the tracing of cultural exchange between communities across time and space 

(Rice 2015). On Madagascar, different ceramic decorative styles have been linked to 

diverse cultural groups throughout the island (Dewar and Wright 1993), and a history of 

global interaction with Madagascar is recorded in the exchange of goods like ceramics 

and beads (Beaujard 2007; Buffa et al. in review). Oral histories and archaeology suggest 

that pottery styles indicate cultural affiliation and can be used to trace trade between 

regions (e.g., Verin 1971). Work conducted by Douglass (2016) established a relative 

chronology for the ceramics of southwest Madagascar based on decorative patterns 

corresponding to different dated archaeological contexts (Figure 7-1). Some decorative 

trends (e.g., burnishing) are commonly recorded in ceramics from all time periods, while 

others (e.g., incising, combing, punctation) vary through time and may reflect shared 

production practices (Douglass 2016). This information can help archaeologists 

understand social connections and their organization over time. 
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Figure 7-1: Ceramic characteristics and their relative chronology. The Early Period 
extends from 1150-450 BP, with most sherds dating between 950-450 BP. 

Stressors and Expectations 

Paleoclimate proxies from southwest Madagascar, particularly records of δ18O which 

serve as proxies for precipitation and evidence dry and wet periods, indicate a highly 

variable climate over the past millennium, including a series of extreme drought events 

(Figure 7-2; Faina et al. 2021; Hixon et al. 2021; Razanatsoa 2019). These changes 

overlap with megafaunal extinction events (e.g., Li et al. 2020; Virah-Sawmy et al. 2010) 

and landscape-scale ecological shifts, some of which are directly related to changes in 

human subsistence practices meant to cope with such environmental instability (Crowley 

et al. 2017; Godfrey et al. 2019). 
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Figure 7-2: Historical events and precipitation/aridity levels based on δ18O data (grey 
lines) from the carbonate of a speleothem collected from Asafora Cave (Faina et al. 2021) 
and from ostracods (Bradleystrandesia cf. fuscata) collected in laminated lake sediments 
at Ranobe (Hixon, Curtis, et al. 2021). Mean δ18O values are given as vertical black lines, 
and climate shifts inferred through Bayesian change point analysis (BCPA) are illustrated 
by red lines. Approximate correspondence with ceramic chronological periods are 
indicated along with dry (red) and wet (blue) periods. BCPA is not applied to the Ranobe 
record before 700 cal BP due to the relative scarcity of data. 

Ethnohistoric data from southwest Madagascar suggest that people responded to 

aridity and changes in resource availability through increased mobility and the adoption of 

a variety of subsistence strategies (Kelly 2005; Yount et al. 2001). Recent archaeological 

work further suggests that settlement distributional patterns in this area are largely the 

result of resource distributions and social ties (Davis, DiNapoli, and Douglass 2020). 

Here, we conduct a social network analysis using a ceramic assemblage 

consisting of 5,221 archaeological sherds from the Velondriake region of southwest 

Madagascar (Figure 7-3). We then compare the results of our analysis with regional 

paleoclimate records from Asafora Cave (Faina et al. 2021) and Ranobe Lake (Hixon, 

Curtis, et al. 2021) and oral historical records to provide additional context for the patterns 
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observed in these network analyses (Figure 7-2). Our goal is to explore the changes in 

social network organization in southwest Madagascar to understand how they correlate 

with sociopolitical and climatological shifts in this region over the past millennium. 

 

Figure 7-3: Map of the study region, showing locations where archaeological ceramics 
and paleoclimate data were recovered. 

We address three main questions: 1) What is the level of community connectivity 

and the geographic extent of social networks in the study region through time, as reflected 

by decorative characteristics in the ceramic assemblage? And 2) Do changes in the form 

of these networks coincide with notable climatic and sociopolitical events? We assume 

that far-reaching social connections would have generated widespread ceramic stylistic 

similarities (e.g., decorative attributes) that persist over time. We expect that alternating 
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dry and wet intervals throughout the past millennium incentivized mobility and 

consequently generated well-integrated and extensive pottery networks. However, we 

expect that the relatively persistent dry conditions during the Middle and Late Periods 

favored spatial shifts in social/ceramic networks as inland communities moved to exploit 

coastal areas with relatively abundant resources, less directly influenced by changes in 

precipitation (Douglass and Rasolondrainy 2021). We also expect that sociopolitical 

instability during the Middle Period (e.g., slave raids, violent conflict, etc.) further 

constrained the geographic extent of social networks as groups adopted defensive 

strategies for security and resource access (Jazwa et al. 2017). Such instability 

(particularly 18th-19th century slavery) could have also constrained social interactions and 

the movement of pottery during the Late Period. However, movement within relatively 

large states (e.g. Sakalava Kingdom) may have been less restricted at this time. 

Materials and Methods 

We analyzed ceramics recovered during surface surveys in Velondriake between 2017 

and 2020. We recorded descriptive attributes pertaining to decorative treatment 

(burnishing, shell-combing, punctation [rectangular, triangular, and square], and incising) 

for each sherd. Next, we calculated frequencies of ceramic attributes (edges) by survey 

location (nodes) in R (R Core Team 2020) and compiled a new CSV file containing all 

ceramic decorative attributes and geographic locations. Next, we divided the data by 

survey location and temporal period using relative chronologies developed by Douglass 

(2016) for Velondriake ceramics (Figure 1). Using these data, we ran a series of network 

analyses in R (R Core Team 2020) following a protocol developed by Peeples (2017).  

Network Analysis 

The incomplete nature of archaeological data holds significant challenges for the 

implementation of SNA methods for understanding the past (Brughmans 2013; Mills 2017; 



 

165 

 

Peeples 2017; Roberts et al. 2021). Various solutions have been proposed, but the 

common theme is the use of statistical validation to assess possible biases or errors in the 

data being analyzed (Östborn and Gerding 2014; Peeples and Roberts 2013). Östborn 

and Gerting (2014) discuss the need for statistical rigor in network analyses in 

archaeology, and advocate for a random permutation approach to randomly reshuffle data 

to evaluate observed patterns from randomly dispersed datasets. 

Brughmans (2013) argues that there are two major problems with many recent 

implementations of SNA in archaeology: (1) a general unawareness of the history and 

diversity of formal network methods and their archaeological suitability has resulted in a 

very limited scope of SNA applications; and (2) most applications of SNA in archaeology 

are not driven by research questions, but rather a limited number of popular models and 

techniques.  Brughmans (2013) suggests that framing studies of archaeological SNA 

applications using complex systems theory can help alleviate some of the limitations. 

Central tenets of SNA are that: 1) Actors and their actions are viewed as 

interdependent; 2) Ties or linkages between actors are channels for the transfer of 

resources; 3) Network models view the network structural environment as providing 

opportunities for or constraints on individual action; and 4) Network models conceptualize 

structure (social, economic, political, and so forth) as lasting patterns of relations among 

actors (Brughmans 2013; Wasserman and Faust 1994). 

We tested three commonly used comparative indices, including co-presence, 

Brainerd-Robinson (BR) similarity (Brainerd 1951; Robinson 1951), and chi-square 

distance. Co-presence is a simple similarity metric that establishes connections on the 

basis of the presence of particular categories of data at multiple sites (Brughmans 2010). 

Following Peeples (2017), co-presence is calculated as: 



 

166 

 

𝑃 = 𝐴 × 𝐴𝑇 

Where P is the number of overlapping categories between sites, A is the incidence matrix 

of categories, and AT is the transposed matrix of those categories. We generated co-

presence networks using a threshold of 50% similarity. This threshold was chosen based 

on trial-and-error, whereby 50% provided the best visualization of network connections. 

BR similarity calculates similarity between nodes as a proportion of the 

representation of the total number of categories present within the data. This is a 

commonly applied similarity metric, and is calculated, following Peeples (2017), using the 

equation:  

𝑆 =
2 − ∑ 𝑐|𝑥𝑐 − 𝑦𝑐|

2
 

Where S is the BR similarity score, c represents all the categories of data, x is the 

proportion of c in the first data assemblage, y is the proportion of c in the second 

assemblage.  

Lastly, Chi-Square (X2) distance is a measurement used to assess similarities 

between datasets by placing higher weight on rarer data categories (Dodge 2008). Chi-

square distance is calculated using the equation: 

𝑋𝑛𝑐 = √∑
1

𝑎𝑛
(𝑥𝑛 − 𝑦𝑛)2 

Where n is the proportional abundance of the nth element of the average row profile in the 

data, and x and y represent the row profiles for the two sites being compared. Chi-square 

distances are useful for accounting for rare attributes in the formation of data connections 

(Peeples and Roberts, 2013). 
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Assessment of sampling error on network results 

To assess the effects that sampling error may have on our results, we calculated centrality 

metrics (degree, eigenvector, and betweenness) using 1000 bootstrap simulations to re-

sample our data (following Mills et al. 2013; also see Roberts et al. 2021) and evaluate 

changes between randomized samples and our original dataset. Increased variability 

indicates higher risk of sampling error. Degree centrality for a node is defined as the total 

number of direct connections in which that node is involved (Peeples, 2017; Peeples and 

Roberts, 2013). In other words, it is a measure of a node’s overall importance in a network 

based on how many connections it has. Betweenness centrality is defined as the number 

of shortest paths between pairs of nodes in a network involving the target node divided by 

the total number of shortest paths in the network as a whole (Peeples, 2017; Peeples and 

Roberts, 2013). In other words, it measures how closely connected a single node is to 

other nodes in the network. Eigenvector centrality is a measure of a node’s importance in 

a network defined in relation to other nodes to which it is connected (Peeples, 2017; 

Peeples and Roberts, 2013; Roberts et al., 2021). 

Next, we re-assess these networks for their resilience to sampling biases using 

1000 bootstrap simulations to subsample the data into 10% intervals and calculate the 

rank-order correlation (Spearman’s ρ) of the overall sample and each sub-sample 

(Costenbader and Valente 2003; Peeples 2017). We also assessed these biases using 

fewer numbers of simulations (100, 200, 500), and results remained largely identical. This 

allows us to evaluate the errors in the dataset that may arise from sampling issues (see 

Appendix E). This procedure is performed to account for missing nodes and edges in the 

dataset, which often plague archaeological investigations. 

Then, we assess the stability of individual nodes and edges in the network by using 

1000 bootstrapped simulations of our network data to create sub-sampled datasets. This 
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allows us to compare the original dataset with sub-sampled components for agreement or 

divergence.  

Ceramic Chronologies 

Relative chronologies for ceramics follow the typologies described in Douglass (2016). 

Based upon prior observations and studies (e.g., Douglass 2016; Hixon, Curtis, et al. 

2021; Parker Pearson et al. 2010; Wright et al. 1996), ceramics decorated with triangular 

punctation and incising were associated with the oldest archaeological contexts, spanning 

from the 9th century AD to between the 13th and 16th centuries AD. Circular and square 

punctations appear slightly later (around the 11th century), and the most recent decorative 

style is shell-combing, which becomes prevalent around the 18th – 20th centuries. Using 

these decorative characteristics, we constructed the relative chronology used in this 

analysis.  

Paleoclimate Assessment using Bayesian Change Point Analysis (BCPA) 

Finally, to interpret the potential relationships between social networks and external 

pressures, we compared the results of our network analysis with paleoclimate datasets 

(Figure 1; Faina et al. 2021, Hixon, Curtis, et al. 2021) and oral history data collected by 

the Morombe Archaeological Project team led by Roger Samba between 2017-2018. 

In tropical zones, surface water δ18O values are sensitive to the ratio of evaporation 

to precipitation (with high E/P leaving surface water enriched in 18O), and these values 

influence the δ18O values of carbonates that are preserved over long-time scales (Lachniet 

2009). The Asafora speleothem δ18O record comes from the southeastern part of 

Velondriake and documents relative changes in moisture availability with sub-decadal 

temporal resolution. The Ranobe ostracod δ18O record comes from ~90 km south of 

Asafora Cave and also documents significant changes in the ratio of evaporation to 
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precipitation in the study region (Hixon, Curtis, et al. 2021). We use Bayesian Change 

Point Analysis (Erdman and Emerson 2008) to compare potential relationships between 

shifts in social network configurations and climate. BCPA is a statistical modelling 

approach that uses Markov Chain simulation to identify splits in a sequence of datapoints 

that can be approximated reasonably with a single mean value. We conduct BCPA in R 

(R Core Team 2021) using the bcp package (Erdman and Emerson 2008). 

Results 

Sensitivity analyses showed that the X2 distance index was least prone to sampling bias. 

When interpreting X2 networks, distance refers to the level of connectivity between two 

nodes, with lower distances having higher connectivity. X2 networks reveal extensive 

connections between archaeological sites in the Velondriake area that shift over time.  

During the Middle Period, these networks shift southward and offshore, and then further 

southward and northward during the Late Period (Figure 7-4). Stylistic attributes of 

ceramics exhibit a number of connections between large numbers of archaeological sites, 

as well as several smaller networks of interaction between smaller numbers of sites 

(Figure 7-4). The highest X2 distances are found among those sites with the greatest 

number and variability in ceramics, while lower values are found among sites with fewer 

ceramics (Table 7-1).  
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Table 7-1: X2-similarity scores and associated ceramic assemblages among select sites surveyed in 2019. Higher scores are 
associated with greater assemblage diversity. 

Site ID 
Average 

X2 
Distance 

Total 
Ceramics 

Burnished 
Interior 

Burnished 
Exterior 

Shell-
combing 
Exterior 

Shell-
combing 
Interior 

Rectangular 
Punctation 

Square 
Punctation 

Triangular 
Punctation 

Incised 

G58 
0.31 (Late 

Period) 
12 6 7 1 0 0 0 0 0 

G89 
0.38 

(Early 
Period) 

5 0 0 0 0 1 0 0 0 

G130 

0.62 
(Early 

Period) 
0.43 (Late 

Period) 

70 25 19 23 1 2 0 0 0 

G134 
0.50 (Late 

Period) 
61 44 31 20 4 0 0 0 0 
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Figure 7-4: X2 Distance network of ceramic attributes over time.  

Stylistic elements like burnishing are widespread throughout most sites in this 

area, but incising and triangular punctations are rare, only appearing in a few select 

locations. Yet, these rarer elements are found both in the north and south ends of the 

study region.  

We also find evidence of community mobility and spatial changes in social 

networks when analyzing centrality measurements of different archaeological sites (Table 

7-2). The eigenvector and degree centrality measurements, quantifying the number of 

connections and relative importance of specific nodes in a network, show a decrease 

during the Middle Period, and then an increase during the Late Period. 
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Table 7-2: Average Centrality Metrics for Decorative Networks. 

X2 Network 
Average 
Distance

Score 

SD of 
Distance

Score 
Degree Eigenvector Betweenness 

Early Period 0.460 0.210 8.583 0.719 21.521 

Middle Period 0.318 0.178 16.186 0.703 21.919 

Late Period 0.303 0.180 28.192 0.713 57.781 

 

Discussion 

We find evidence of spatially extensive, densely clustered social networks in this area over 

the past 1200 years that fluctuate through time. We observe spatial contractions of 

networks around resource rich areas and defendable locations during periods of climatic 

and sociopolitical instability, which is consistent with our expectations. Trends in average 

X2 distance scores between locations suggest that community organization is consistent 

with a core-periphery model (Gondal and McLean 2013), which can help reduce risk by 

balancing redundancy and diversity in social structure. Ethnographically, communities in 

this area demonstrate a mix of strong and weak social relationships that give flexibility 

when coping with hypervariable climatic conditions (Douglass and Rasolondrainy 2021). 

Locations with low X2 distance scores appear to have higher ceramic abundance 

and variability than sites with higher scores, suggesting that these sites were central nodes 

for community connection that were likely occupied for longer timeframes. We find that the 

strongest connectivity between sites occurs between locations surrounding Fagnemotse 

Bay, which may reflect stable food sources and/or increased defendability of this region 

(Figure 7-3). Geographical shifts in social connections may indicate mobility among 

communities through time, which is a well-established lifeway strategy in Velondriake, 

historically (e.g., Koechlin 1975; Deschamps 1959). We know from previous 

archaeological investigations that settlement and mobility patterns are driven by resource 

availability and social aggregation (Davis, Andriankaja, et al. 2020). 
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Over the last millennium, there appears to be a series of contractions and 

expansions of social networks (Figure 7-4). Looking at historical and paleoclimate records, 

we can evaluate the degree to which different socio-environmental and sociopolitical 

contexts may have impacted social networks. 

Early Period Network (1150-450 BP) 

The earliest ceramic network is characterized by gradual fluctuations in 

precipitation that persist over 100-200 years and represent both the wettest and driest 

intervals of the last millennium (Figure 7-2). This period is defined by initially drier 

conditions, followed by 400 years of fluctuation between wet and dry periods. During this 

time period social networks expand for most of the Velondriake coastline, including the 

offshore island of Nosy Ve. Apart from this main network, there appears to have been a 

subset of the population that participated in its own distinct social network, defined by 

connections between several coastal sites that were disconnected from this central hub 

of interaction (Figure 7-4). 

Archaeology and oral history help to elucidate what influenced the structure of this 

early ceramic network. Archaeological research suggests that villages and hamlets started 

to emerge in the southwest during this period (Douglass 2016). Potsherds encountered in 

the Velondriake area dating to the Early Period resemble an inland assemblage dating 

between 600-800 BP from the site of Asambalahy (Vérin 1971). Oral history, although for 

later periods, mentions long traditions of people in the Velondriake area exchanging 

marine goods with agricultural products and pottery vessels from the middle valley of the 

Mangoky River (where the site of Asambalahy is located) during lean seasons or droughts. 

This suggests that while climate stresses started to affect livelihoods in the Velondriake 

area during the last four centuries of this period and sociopolitical insecurity was still low, 

communities relied on trade/barter with other regions to alleviate the impacts of climate 



 

174 

 

challenges. Therefore, communities likely relied on trade and kinship relationships with 

other communities to acquire goods. 

Middle Period Network (450-250 B.P.) 

In the Middle Period, fluctuations in climatic conditions appear more temporally 

concentrated, with shifts occurring multiple times within 200 years. These shifts include a 

pronounced drought identified in other proxies ca. 400 BP (Razanatsoa 2019). These dry 

conditions could have contributed to the spatial contraction of settlements that we see in 

ceramic assemblages and our network analysis. The number of nodes disconnected from 

the bay area increases to 23, and a third subnetwork consisting of two node connections 

is established, perhaps from a breakdown of the larger social network. 102 of 121 oral 

historians in the Velondriake region mentioned an increase in aridification and rainfall 

unpredictability over time. According to historians, this unpredictability of rainfall pushed 

herders and agriculturists to abandon inland activities and adopt marine subsistence 

strategies along the Velondriake coast. As they were still new to a maritime subsistence, 

migrants to the coast described a preference for exploiting near shore resources (e.g., 

gathering shellfish, gleaning octopuses, and net-fishing in the near shore (tarikaky)) 

(Douglass and Rasolondrainy 2021). Places like Fagnemotse Bay would have been ideal 

for exploiting near shore resources, potentially explaining the concentration of nodes 

around the bay during periods of stress. All 35 oral historians living in villages around this 

bay confirmed their ancestors used to be farmers, herders, and foragers, but converted to 

maritime fishing to exploit the bay’s resources. 

This period also saw the emergence of intergroup warfare, polity formation, and 

the slave trade in southwest Madagascar (Grandidier and Grandidier 1903, 1904). 58 of 

121 oral historians mentioned slave and cattle raiders attacking their former villages. Most 

of these attacks happened inland rather than along the coast. The concentration of 
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populations along the Velondriake coast may therefore indicate increased sociopolitical 

stability due to the emergence of Sakalava polities who were more interested in cattle 

raids and grabbing pastureland and farmland than in attacking fishing villages (Lombard 

1988). Oral historians also reported that slave raids conducted along the Velondriake 

coast mostly failed because Vezo fishers avoided confrontations by moving to offshore 

islands that inland slave raiders could not access. 

Late Period Network (250-50 B.P.) 

In the Late Period, climatic conditions appear more stable and consistently drier 

(Figure 7-2). This climate coincides with expanded social networks northward and 

southward along the coast of Velondriake, and even beyond the Velondriake region. The 

number of nodes disconnected from Fagnemotse Bay increases from 23 to 29. The return 

of spatially extensive network connections, including settlements on offshore islands, 

suggests increased sociopolitical insecurity, but also possibly demographic increase due 

to the arrival of new groups seeking refuge. 

During this period, archaeology demonstrates an increase in number and size of 

habitation sites, along with shorter occupation horizons (Douglass 2016), while oral history 

records mention an increase in artificial kinships (such as intergroup marriage, ziva, and 

blood brotherhood) between natives and newcomers. Meanwhile, both historical 

documents (Grandidier and Grandidier 1906, 1907) and oral history provide evidence of 

ongoing raids and slave trading during this period, which people in Velondriake often 

avoided by temporarily moving to offshore islands. During this later period, however, the 

nature of archaeological sites suggests (semi)permanent habitations on offshore islands. 

The expansion of social networks during this period may be related to the establishment 

of the Sakalava Kingdom, which may have brought some level of stability to the 

Velondriake region. However, the continuation of sociopolitical instability and violence 
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coupled with climate-induced resource scarcity could explain the geographic expansion of 

community networks. Throughout these periods, communities seem to have maintained 

higher levels of connectivity through their natural and artificial kinships. Maintaining these 

ties is indeed crucial in terms of resource access, especially in the face of climate 

unpredictability (Douglass and Rasolondrainy 2021). There is evidence from oral history 

records that climate change influenced how people tried to acquire resources by 

maintaining higher levels of community connectivity across larger geographic distances. 

Future work can seek to disentangle this relationship via chronology construction and 

causality testing. 

Conclusion 

Our analysis demonstrates that communities living in the Velondriake area over the past 

millennium maintained widespread social networks, which have contracted and expanded 

over time. We find that the shifts in network structure coincide with changes in 

climatological conditions and sociopolitical instability, suggesting that these external 

factors influenced social connectivity. We offer the following questions for future work in 

light of our results which should be assessed using causality testing and additional data 

collection: 1) shifts in climatological conditions impacted food procurement, leading to 

migrations of communities to a centralized location that was resilient to changes in marine 

and terrestrial climate; and 2) periods of sociopolitical unrest (e.g., slave raids, community 

conflict, war and conquest) resulted in community dispersal across a broader geographic 

area, including offshore islands, and a reorganization of social networks. By establishing 

comprehensive chronologies for the sites explored in this study and the generation of 

highly resolved climatic and environmental reconstructions for this region, we can further 

assess these hypotheses.  
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Chapter 8: Refining the settlement chronology of SW Madagascar: Results 

of new excavations in the Velondriake Marine Protected Area9 

Over the past three years the Morombe Archaeological Project (MAP) has been involved 

in a landscape scale analysis of the settlement history of the Velondriake Marine Protected 

Area in Southwest Madagascar. Using a mix of remote sensing and ground-based survey 

strategies, over 1000 km2 of area was systematically investigated for archaeological 

materials and several hundred new sites were recorded (Davis, Andriankaja, et al. 2020). 

Based on earlier surveys, we conducted targeted excavations at locations throughout 

Velondriake to refine chronological information about the timing and nature of settlement 

in this region (Figure 8-1).  

Between 2020 and 2021, a total of 8 excavation units were uncovered at 7 different 

sites across the study area. These sites all displayed evidence of human occupation (e.g., 

ceramics, marine shell tools, beads, etc.) based on surface surveys conducted prior to 

excavation (see Davis et al. 2020). This article describes the material culture recovered 

from these excavations as well as a chronology of the region’s settlements. In what 

follows, we present a brief synopsis of the excavation units at each location, the materials 

recovered, and a short interpretation of the age and use of each of these sites. Further 

investigation and analysis of recovered materials is necessary and will constitute future 

work.  

 
9 Davis, D. S., Manahira, G., Domic, A. I., Lahiniriko, F., Andriankaja, V., Carnat, T. L., Clovis, M. B. J., 

Colombe, C., Fenomanana, F., Hubertine, L., Justome, R., Léonce, H., Yves, A. J., Roi, R., Victorian, F., 

Voahirana, V., & Douglass, K. (In Preparation). Refining the settlement chronology of SW Madagascar: 

Results of new excavations in the Velondriake Marine Protected Area. 
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Figure 8-1: Map of excavated locations reported in this chapter alongside prior 
Morombe Archaeological Project excavation work (2011-2017) in the Velondriake Marine 
Protected Area. 

Regional Background 

The climatic conditions in the southwest of Madagascar are demarcated by a wet 

(monsoon) season and a dry season. Overall, the southwest of the island is extremely 

arid, accumulating less than 50cm of rainfall per year (Faina et al. 2021; Jury 2003; 

Razanatsoa 2019). The Velondriake region, specifically, contains an underlying geology 

composed of limestone and sandy-shell, and sits on a Quaternary dune system (Besairie 

1964). The area is home to highly endemic flora and fauna which varies according to the 

underlying geology (Douglass and Zinke 2015), and vegetative species are largely 
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xerophytic and comprise the “spiny thicket” ecoregion (Gautier and Goodman 2003). 

Further inland from Velondriake, Pleistocene and Eocene deposits define the geological 

system (Besairie 1964). 

The Velondriake Marine Protected Area consists of a total area of approximately 

800 km2 and is the home to over 10,000 people (Harris 2007). The area’s northernmost 

boundary is located ~20km south of the city of Morombe and its southernmost boundary 

is ~130km north of the city of Toliara in SW Madagascar’s Toliara Province. Velondriake 

is home to a variety of marine ecosystems, including coral reefs, mangroves, seagrass 

beds, and intertidal estuaries. The inhabitants of Velondriake consist primarily of Vezo 

fishers, communities whose livelihood strategies revolve primarily around marine resource 

exploitation (Astuti 1995), as well as Mikea and Masikoro communities, whose livelihood 

strategies revolve around forest resources, agriculture, and pastoralism (Yount et al. 

2001). Today, Velondriake consists of over 32 different villages, and the marine protected 

status of the region was established by these communities to aid in marine resource 

conservation efforts (Cripps and Harris 2009). 

The archaeology of the Velondriake region of Madagascar is a recent 

development, with the first comprehensive investigation taking place starting in 2011 by 

Douglass (2016). Douglass’ work focused on regional survey and the excavation of six 

different open air and rock shelter sites occupied between 3000 B.P. and the present 

(Table 8-1; Douglass 2016, 2017; Douglass et al. 2019). She conducted a more targeted 

analysis of contexts dated between 1400 – 100 BP (Douglass et al. 2018). The region 

appears to have an extensive history of marine resource exploitation by human 

inhabitants, including resource acquisition in a range of habitats extending from coral 

reefs, mangroves, and intertidal zones, among others (Davis, DiNapoli, and Douglass 

2020; Douglass 2017). Recent surveys of the area reveal a settlement system driven by 



 

180 

 

environmental and sociopolitical resources and a closely connected social network of 

permanent and semipermanent communities (Davis, Andriankaja, et al. 2020; Davis et al. 

In Review).  
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Table 8-1: Previous Radiocarbon Dates from Excavations in the Velondriake Marine Protected Area. 

Lab ID 
Sample 

Description 
Site/Context 

14C 
Age 

Error 
Calibrated Date 

B.P. (2σ or 95.4%) 
Calibration Curve 

Reporting 
Publication 

D-AMS-012442  
 

Worked 
Marine 
Shell 

NSS2, Velondriake 3086 ±32 3375-3214 Marine20* Douglass 2017 

D-AMS-012441  
Worked 
Marine 
Shell 

Antsaragnagnangy, 
Velondriake 

1954 ±27 1987-1820 Marine20* Douglass 2017 

D-AMS-012440  Charcoal 
Antsaragnagnangy, 

Velondriake 
915 ±25 911-742 SHCAL20 Douglass 2017 

D-AMS-001950  Charcoal Tony, Velondriake 1179 ±21 1178-1004 SHCAL20 Douglass 2017 
D-AMS-001951  Charcoal Tony, Velondriake 196 ±26 301-0 SHCAL20 Douglass 2017 

D-AMS-001949  Charcoal 
Antsaragnasoa, 

Velondriake 
279 ±22 430-159 SHCAL20 Douglass 2017 

OxA 34215 
Avian 

eggshell 
Tony, Velondriake 2012 ±37 2004-1883 SHCAL20 Douglass et al. 2019 

OxA 34216 
Avian 

eggshell 
Tony, Velondriake 2004 ±37 2000-1832 SHCAL20 Douglass et al. 2019 

OxA-34274 
Avian 

eggshell 
Tony, Velondriake 1677 ±27 1588-1426 SHCAL20 Douglass et al. 2019 

OxA-34217 
Avian 

eggshell 
Tony, Velondriake 8470 ±75 9545-9149 SHCAL20 Douglass et al. 2019 

OxA-34640 
Avian 

eggshell 
Tony, Velondriake 2010 ±25 1999-1837 SHCAL20 Douglass et al. 2019 

 

* Calibrated using Marine20 marine curve (Heaton et al. 2020) with estimated δR of 200 years ±50 (following Douglass 2017). 
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Overall, most chronological information available for Velondriake, to date, comes 

from ceramic data, with only a small number of absolute radiocarbon dates. Thus, our 

purpose in this study is to acquire a better understanding of the timeframe of human 

occupation of the Velondriake area using absolute dating and a regional approach to 

excavation. 

Methods 

Excavations were conducted with trowels, and soils were screened using a 2mm mesh. 

We excavated using natural stratigraphic changes as level breaks. Soil was described 

using the Munsell soil color chart. 

Ceramics were analyzed in the field by the MAP team following the protocol 

established by Douglass (2016). All sherds wider than 1cm were included in the analysis 

and were weighed using a digital scale and measured with mechanical calipers. Sherd 

interior, exterior, and paste colors were described using the Munsell soil color chart, and 

all decorative elements and surface treatments were recorded and described. Ceramic 

rims were drawn, in addition to sherds representing unique decorative styles. We used 

hand magnifying glasses with 10x magnification to record macro inclusions and firing 

atmosphere was described for each ceramic sherd. 

Faunal remains were analyzed using a species code developed by Douglass 

(2017) which includes the scientific names and how these animals were gathered, 

processed, disposed of, and used. An in-depth analysis of faunal material is not the focus 

of this article, however, and will constitute a future project. 

Charcoal materials excavated in situ from each excavation unit were analyzed at 

Penn State’s Olo Be Taloha African Environmental Archaeology Laboratory (see 

Supplemental Table F-1). All charcoal was photographed using a Keyence VK-X1100 
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(violet) laser scanning microscope at 40x, 80x, 100x, and 150x magnification. Samples 

were identified using a reference collection of modern macrocharcoal from southwestern 

Madagascar housed at the Olo Be Taloha African Archaeology Laboratory and the Inside 

Wood Database (https://insidewood.lib.ncsu.edu/). A total of 65 charcoal pieces were 

recovered from across all the excavations reported here. All well-preserved, identifiable 

samples with stratigraphically secure contexts were selected for AMS analysis, following 

chronometric hygiene procedures (Figure 8-2; see Napolitano et al. 2019; Spriggs 1989; 

Wilmshurst et al. 2011). All selected samples were pretreated using an acid-base-acid 

(ABA) decontamination protocol to remove humates from the charcoal. ABA consisted of 

washes with 1N HCl and 1N NaOH for 20-minute intervals at 70°C. Pretreatment and 

graphitization were conducted in the PSU Stable Isotope Geochemistry Laboratory. AMS 

was conducted at Penn State’s Energy and Environmental Sustainability Laboratories 

Radiocarbon Facility and dates are reported using accepted standards (Stuiver and 

Polach 1977). We conducted AMS calibrations using the SHCAL20 calibration curve 

(Hogg et al. 2020) within the rcarbon package in R (Crema and Bevan 2021; R Core Team 

2021). 
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Figure 8-2: Illustration of chronometric hygiene procedure, following previous protocols 
by Wilmhurst et al. (2011) and Douglass et al. (2019). 

For site G134, which yielded an abundance of radiocarbon dates, we generated a 

Bayesian age-depth estimation for the site using the rbacon package in R (Blaauw et al. 

2021; R Core Team 2020) (see Appendix F Supplemental Code). Bacon is a method of 

age-depth estimation that uses Bayesian statistics to construct accumulation models using 

14C dates and other prior information (Blaauw and Christen 2011). Bacon divides a deposit 

into vertical sections and estimates soil accumulation/sedimentation rates using millions 

of Markov Chain Monte Carlo (MCMC) iterations for each of these sections. These 

accumulation rates are then combined with estimated starting dates and other prior 

information (see Supplemental Code) about the deposit to form the age-depth model. This 

allows us to understand depositional histories and estimate ages of artifacts found in 

Final Chronometric Hygene Score

3 = Class 1 4 = Class 2 5 = Class 3 6 = Class 4

Association with archaeological contexts:

Certain | Uncertain

+1 +2

14C measurement Error 

< 10%  | > 10%

+1 +2

Identified Short Lived Species | Long Lived or Unidentified Species

+1 +2
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between charcoal samples. Below we describe the results of each of the excavations and 

provide a basic site description for each location. 

Results 

We excavated eight 1x1m units and one 1x2m unit throughout the Velondriake. Within five 

of these units, charcoal material was recovered (Table 8-2). Most charcoal dates were 

attributed as class 1 or 2, which are the most reliable (Table 8-3). Below, we present these 

newly acquired chronological data and provide a descriptive report of materials recovered 

from each excavation. 
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Table 8-2: Radiocarbon dates from charcoal recovered from excavation units reported in this study. All calibrations use the 
SHCAL20 calibration curve (Hogg et al. 2020) unless otherwise indicated. 

PSUAMS# Sample ID Description F14C  ± 
D14C 
(‰) 

± Species 
14C age 

(BP) 
± 

Cal BP 
(2σ) 

10424 BELA1 
G130 (BELA) Unit 1 Level 1 

Charcoal #1. 13cm. 
1.1911 0.0021 191.1 2.1 Tree 200 15 283-107 

10425 BELA2 
G130 (BELA) Unit 1 Level 1 

Charcoal #2. 20cm. 
0.9878 0.0016 -12.2 1.6 Tree 200 15 283-107 

10426 BELA3 
G130 (BELA) Unit 1 Level 1 

Charcoal #3. 18cm. 
0.9847 0.0016 -15.3 1.6 Tree 205 15 283-141 

10427 BELA4 
G130 (BELA) Unit 1 Level 1 

Charcoal #4. 21cm. 
0.9974 0.0017 -2.6 1.7 Tree 125 20 253-0 

10428 BELA5 
G130 (BELA) Unit 1 Level 2 

Charcoal #5. 20cm. 
0.9866 0.0017 -13.4 1.7 Tree 155 15 262-0 

10429 G123-5 
G123. Unit 3 Level 2 Charcoal #2. 

20cm. 
0.9897 0.0018 -10.3 1.8 Wood 415 15 495-331 

10430 G123-4 
G123. Unit 3 Level 1 Charcoal #1. 

16.5cm. 
0.9333 0.0018 -66.7 1.8 Tree 555 20 549-509 

10431 G123-3 
G123. Unit 2 Level 1 Charcoal #3. 

22cm. 
0.9499 0.0017 -50.1 1.7 Cf. Adansonia 85 15 132-26 

10432 G123-2 
G123. Unit 2 Level 1 Charcoal #2. 

16cm. 
0.9755 0.0017 -24.5 1.7 Cf. Adansonia 110 15 242-23 

10433 G123-1 
G123. Unit 2 Level 1 Charcoal #1. 

14cm. 
0.9753 0.0017 -24.7 1.7 Wood 20 15 58-27 

10434* AMP1 
Ampasimara. Unit 1 Level 1 

Charcoal #1. 8cm. 
0.9746 0.0017 -25.4 1.7 Wood -1400 15 -9 – -38 

10435 AMP2 
Ampasimara. Unit 1 Level 1 

Charcoal #2. 26cm. 
0.9844 0.0019 -15.6 1.9 Tree 100 15 239-25 

10436 AMP3 
Ampasimara. Unit 1 Level 2 

Charcoal #3. 27cm. 
0.9810 0.0016 -19.0 1.6 Tree 125 15 252-5 

10437 G134-1 
G134. Unit 1 Level 1 Charcoal #1. 

21cm. 
0.9868 0.0016 -13.2 1.6 Wood 105 15 240-24 

10438 G134-2 
G134. Unit 1 Level 1 Charcoal #2. 

20cm. 
0.9903 0.0017 -9.7 1.7 Tree 80 15 129-26 
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10439 G134-3 
G134. Unit 1 Level 1 Charcoal #3. 

19cm. 
0.9855 0.0017 -14.5 1.7 Tree 120 15 251-7 

10440 G134-4 
G134. Unit 1 Level 1 Charcoal #4. 

34cm. 
0.9848 0.0017 -15.2 1.7 Tree 125 15 252-5 

10441 G134-5 
G134. Unit 1 Level 1 Charcoal #5. 

38cm. 
0.9935 0.0015 -6.5 1.5 Tree 55 15 59-26 

10442 G134-6 
G134. Unit 1 Level 1 Charcoal #6. 

38cm. 
0.9918 0.0018 -8.2 1.8 Tree 65 15 125-27 

10443 G134-7 
G134. Unit 1 Level 1 Charcoal #7. 

43cm. 
0.9852 0.0017 -14.8 1.7 Unidentified 120 15 251-7 

10463 G134-8 
G134. Unit 1 Level 1 Charcoal #8. 

40cm. 
0.9882 0.0018 -11.8 1.8 Tree 95 15 256-33 

10444 G134-10 
G134. Unit 1 Level 2 Charcoal 

#10. 43.5cm. 
0.9788 0.0016 -21.2 1.6 Possible tuber 170 15 272-0 

10445 G134-11 
G134. Unit 1 Level 2 Charcoal 

#11. 47cm. 
0.6988 0.0016 

-
301.2 

1.6 Tree 2880 20 
3062-
2867 

10446 G134-13 
G134. Unit 1 Level 2 Charcoal 

#13. 50cm. 
0.9857 0.0016 -14.3 1.6 Possible shrub 115 15 246-22 

10447 G134-14 
G134. Unit 1 Level 2 Charcoal 

#14. 50cm. 
0.9870 0.0022 -13.0 2.2 

Possible 
shrub/cactus 

105 20 251-7 

10448 G134-F1 
G134. Unit 1 Level 3 Feature 1 

Charcoal #1. 57cm. 
0.9777 0.0019 -22.3 1.9 Tree 180 20 279-0 

10449 G134-F2 
G134. Unit 1 Level 3 Feature 2 

Charcoal #1. 65cm. 
0.9866 0.0017 -13.4 1.7 Possible Tuber 110 15 242-23 

10450 G134-15 
G134. Unit 1 Level 4 Charcoal 

#15. 68cm. 
0.9854 0.0018 -14.6 1.8 Possible shrub 120 15 251-7 

10451 G134-16 
G134. Unit 1 Level 4 Charcoal 

#16. 66cm. 
0.9858 0.0017 -14.2 1.7 Cf. Adansonia 115 15 246-22 

10452 G134-17 
G134. Unit 1 Level 4 Charcoal 

#17. 68cm. 
0.9832 0.0016 -16.8 1.6 Tree 135 15 253-0 

10453 G134-18 
G134. Unit 1 Level 4 Charcoal 

#18. 68cm. 
0.9799 0.0019 -20.1 1.9 Tree 165 20 273-0 

10464 G134-19 
G134. Unit 1 Level 4 Charcoal 

#19. 68cm. 
0.9846 0.0019 -15.4 1.9 Tree 125 20 268-14 

10465 G134-20 
G134. Unit 1 Level 4 Charcoal 

#20. 69cm. 
0.9806 0.0018 -19.4 1.8 

Possible 
shrub/cactus 

160 15 283-0 

10466 G134-23 
G134. Unit 1 Level 4 Charcoal 

#23. 71cm. 
0.9875 0.0017 -12.5 1.7 Possible shrub 100 15 256-33 

10467 G134-24 
G134. Unit 1 Level 4 Charcoal 

#24. 71cm. 
0.9836 0.0018 -16.4 1.8 Tree 135 15 270-10 
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10468 G134-26 
G134. Unit 1 Level 4 Charcoal 

#26. 73.5cm. 
0.9860 0.0018 -14.0 1.8 

Possible Palm 
Tree 

115 15 259-30 

10469 G134-27 
G134. Unit 1 Level 5 Charcoal 

#22. 76cm. 
0.9768 0.0020 -23.2 2.0 Possible shrub 190 20 291-0 

10470 G134-28 
G134. Unit 1 Level 5 Charcoal 

#23. 72cm. 
0.9800 0.0019 -20.0 1.9 Possible shrub 160 20 284-0 

10471 G134-30 
G134. Unit 1 Level 5 Charcoal 

#25a. 82cm. 
0.9885 0.0019 -11.5 1.9 Tree 95 20 257-33 

10472 G134-31 
G134. Unit 1 Level 5 Charcoal 

#25b. 82cm. 
0.9768 0.0017 -23.2 1.7 Shrub 190 15 290-0 

10473 G134-32 
G134. Unit 1 Level 5 Charcoal 

#26. 77cm. 
0.9786 0.0019 -21.4 1.9 Unidentified 175 20 289-0 

10474 G134-33 
G134. Unit 1 Level 5 Charcoal 

#27. 79cm. 
0.9836 0.0017 -16.4 1.7 Unidentified 135 15 270-10 

10475 G134-34 
G134. Unit 1 Level 5 Charcoal 

#28. 78cm. 
0.9739 0.0019 -26.1 1.9 Tree 210 20 303-0 

10476 G134-35 
G134. Unit 1 Level 5 Charcoal 

#29. 84cm. 
0.9760 0.0018 -24.0 1.8 Tree 195 20 293-0 

10477 G134-36 
G134. Unit 1 Level 5 Charcoal 

#30. 82cm. 
0.9776 0.0018 -22.4 1.8 Tree 180 15 286-0 

10478 G134-37 
G134. Unit 1 Level 6 Charcoal 

#31. 85cm. 
0.9694 0.0019 -30.6 1.9 Tree 250 20 422-151 

10479 G134-38 
G134. Unit 1 Level 6 Charcoal 

#32. 81cm. 
0.9818 0.0017 -18.2 1.7 Tree 145 15 278-6 

10480 G134-39 
G134. Unit 1 Level 6 Charcoal 

#33. 90cm. 
0.9846 0.0018 -15.4 1.8 Tree 125 15 265-22 

10481 G134-40 
G134. Unit 1 Level 6 Charcoal 

#34. 90cm. 
0.9807 0.0019 -19.3 1.9 Tree 155 20 283-0 

10482 G134-41 
G134. Unit 1 Level 6 Charcoal 

#35. 92cm. 
0.9765 0.0018 -23.5 1.8 Tree 190 15 290-0 

10483 G134-42 
G134. Unit 1 Level 6 Charcoal 

#36. 89cm. 
0.9772 0.0018 -22.8 1.8 

Not 
Euphorbiaceae 

185 20 290-0 

10484 G134-43 
G134. Unit 1 Level 6 Charcoal 

#37. 96cm. 
0.9718 0.0016 -28.2 1.6 

Cf. 
Euphorbiaceae 

230 15 207-151 

10485 G134-44 
G134. Unit 1 Level 6 Charcoal 

#38. 87cm. 
0.9853 0.0018 -14.7 1.8 

Not 
Euphorbiaceae 

120 15 263-26 

10486 G134-45 
G134. Unit 1 Level 6 Charcoal 

#39. 96cm. 
0.9725 0.0018 -27.5 1.8 Tree 225 20 309-0 

10487 G134-47 
G134. Unit 1 Level 7 Charcoal 

#41. 110cm. 
0.9766 0.0018 -23.4 1.8 Tree 190 15 290-0 
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10488 G134-48 
G134. Unit 1 Level 7 Charcoal 

#42. 115cm. 
0.9794 0.0018 -20.6 1.8 Tree 165 15 285-0 

10489 G134-49 
G134. Unit 1 Level 8 Charcoal 

#43. 129cm. 
0.9769 0.0017 -23.1 1.7 Tree 190 15 290-0 

10490 G134-50 
G134. Unit 1 Level 8 Charcoal 

#44. 144cm. 
0.8983 0.0019 

-
101.7 

1.9 Cf. Adansonia 860 20 792-722 

* Calibrated using BOMB21 SH1 2 curve (Hua et al. 2021). 
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Table 8-3: Chronometric Hygiene of charcoal samples processed via AMS. For specific 
details, see Supplemental Table F-1. 

Site ID 
# of Charcoal 

Samples 
Processed 

Class #1 Class #2 Class #3 Class #4 

G58 (MOROY) 0 - - - - 
G123 Unit 1 0 - - - - 
G123 Unit 2 3 0 0 3 0 
G123 Unit 3 2 0 2 0 0 

G130 (BELA) 5 0 4 1 0 
G134 45 6 17 22 0 

G-15-2020 
(Ampasimara) 

3 0 1 2 0 

SAVABO 0 - - - - 
TOTAL 58 6 24 28 0 

 

Radiocarbon Chronology of Human Presence in Velondriake, Madagascar 

14C dates from the excavations reported here vastly expand our chronological record for 

the archaeology of Velondriake (Figure 8-3). In the south, charcoal from site G123 Unit 2 

provides evidence of occupation between 240 and 27 cal. BP.  Moving northward, G123 

Unit 3 indicates human occupancy between 550 and 330 cal. BP. To the northeast of 

G123, Ampasimara (G-15-20) has evidence of human occupancy as early as 252 cal. BP 

up to the present day (-37 cal. BP). The northernmost site of G130 (BELA) demonstrates 

human occupation between 280 cal. BP and the present. 
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Figure 8-3: Radiocarbon data for all excavations in Velondriake conducted in this study 
except G134. Red dot represents calibration for PSUAMS#10434 which contained bomb 
carbon from post-1950. 

G134 presents the largest continuous sequence of carbon dates for the entire 

Velondriake region, to date, with a total of 45 charcoal dates. We generate a Bayesian 

age-depth estimation (Figure 8-4) for the site using the rbacon package in R (Blaauw et 

al. 2021; R Core Team 2020). We constructed our model using the following parameters: 

[accumulation rate (acc.mean) = 2 year cm−1, shape distribution of accumulation rate 

(acc.shape) = 1.5, memory mean (mem.mean) = 0.5, memory strength (mem.strength) = 

10, depths of hiatuses (hiatus.depths) = c(130, 140, 150), maximum hiatus length in years 

(hiatus.max) = 100] (see Appendix F). We assume the presence of three hiatus periods 

around 130cm, 140cm, and 150cm based on the age difference between a charcoal date 
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from 129cm (185 median cal. BP) and the charcoal date from 144cm (756 median cal. 

BP) coupled by an absence of in situ artifacts recovered between 130 and 135 cm, 139 

and 143 cm, and 149 and 153cm. Based on the distance between these two dates, we 

use a maximum hiatus length of 100 years as our starting assumption for the model. 

Longer lengths of time were also tested (e.g., 200) but resulted in poorer fitting models. 

All 14C dates were included in the model except for PSUAMS#10445, which was an 

extreme outlier. Based on this age depth model, lithic material (discussed below) 

recovered at a depth of 166cm likely dates to between 728 and 1235 cal. BP (CI = 95%, 

median = 982 cal. BP). We also ran another model using only class 1 and 2 dates with the 

same parameters and results were comparable (Supplemental Figure F-1). 

 

Figure 8-4: Bayesian age depth estimation model. Top: MCMC iterations of the modeling 
simulation (left plot). Good runs show stationary distributions with little structure between 
neighboring iterations (Blaauw and Christien 2013). The prior (green curve) and posterior 
(grey histogram) distributions of the accumulation rate (top left-middle plot), memory (top 
right-middle plot), and hiatus size (top right). Bottom: plot shows 14C dates (transparent 
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blue) calibrated using SHCAL20 (Hogg et al. 2020) and the age-depth model, where 
darker grey areas indicate higher likelihood ages. Horizontal grey dotted lines represent 
95% confidence intervals, and the red dotted line is the best-fit model based on a weighted 
mean. Vertical grey lines represent hiatuses added to the model at 130, 140, and 150cm 
based on absences of cultural materials recovered between 130-135, 139-144, and 145-
153cm. Depth of recovered lithic (166cm) is indicated by the yellow star.  

Site Descriptions 

G-123 Units 1 and 2: The site lies approximately 50m southeast from the coastline of a 

small bay located approximately 1 km south of the modern village of Andavadoaka. Initial 

ground survey of the area identified dozens of artifacts consisting of ceramics, marine 

shells, shell beads, and burnt stones, indicating that there was a likelihood of finding the 

remnants of a foraging campsite in this area with further investigation. 

In 2021, three 1m X 1m excavation units were opened at G123 by members of the 

MAP Team (Figure 8-5). Unit 1 yielded three stratigraphic levels of cultural material 

extending to a depth of 90cm, including an abundance of bones from marine species 

(Table 8-4, Supplemental Figure F-2). The unit was subsampled within the third 

stratigraphic level due to a significant decrease in the density of cultural material 

recovered. This unit includes a circular concreted feature that appears in the second level 

and continues past the third excavation level (Figure 8-5). It is located at about 50cm in 

depth near the northern edge of the excavation unit. The feature itself might represent a 

hearth or fire-pit, given its darker color (10YR 6/4) from the surrounding soil (10YR 7/2) 

and hardened components that may be remnants of firing activity. 
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Figure 8-5: Profile wall drawings of G123 Unit 1. Colors correspond with munsell color 
codes recorded during excavation (Surface and Level 1 = 5Y 8/1; Level 2 = 10YR 7/2; 
Level 3 = 10YR 8/2; Concreted Feature = 10YR 6/4). 3D box shows dimensions of 
excavation unit and colored directional abbreviations correspond with sections of the 
drawing. 
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          Table 8-4: G123 Unit 1 Marine Shell Material 

Level Family Species Food (Y/N) Intact Broken Burned Total Weight 

Surface Strombidae  N   1 1 1 10 

Surface Turbinidae Turbo coronatus Y   2   2 7 

Surface Fasciolariidae 
Fasciolaria 
trapezium 

Y           

                  

Level 1 Turbinidae Turbo coronatus Y           

Level 1 Fasciolariidae 
Fasciolaria 
trapezium 

Y   1   1 75 

Level 1 Fasciolariidae 
Fasciolaria 
trapezium 

Y 1 1   1 140 

Level 1 Turbinidae Turbo coronatus Y   1   1 7 

Level 1 Strombidae Lambis lambis N   1   1 8 

Level 1 Unknown       1   1 48 

Level 1 Achatinidae Achatina achatina N 9 1   10 22 

              1   

Level 2 Neritidae Nerita albicilla N 1     1 5 

Level 2 Buccinidae  N 1 1   1 0 

Level 2 Neritidae Nerita undae Y (starvation)* 1     1 0 

Level 2 Achatinidae Achatina achatina N 12 4   16 27 

*Starvation foods refer to taxa which are generally only consumed in times of stress or poverty when preferred sources are unavailable.
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Unit 2 is located 35m to the southwest of Unit 1 and consists of two stratigraphic 

levels of cultural activity (Figure 8-6). The surface is defined by the presence of faunal 

remains (crab bones), worked shell, and charcoal fragments. The first layer of excavation 

revealed 17 in situ marine shell tools and three pieces of charcoal. Level 2 contained 7 

more in situ worked marine shells as well as several crab bones and charcoal material. 

Marine shells consist of similar species to those recovered in Unit 1 (Table 8-5; 

Supplemental Figure F-3). Charcoal recovered from this unit indicates human occupation 

between 258 and 27 cal. BP. Heavy fractions of soil were taken from the surface and layer 

1.  

 

 

Figure 8-6: Profile wall drawing of G123 Unit 2. Colors correspond with munsell color 
codes recorded during excavation (Surface = 2.5Y 8/2; Level 1 = 2.5Y 8/1; Level 2 = 
2.5Y 7/2). 3D box shows dimensions of excavation unit and colored directional 
abbreviations correspond with sections of the drawing. 
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Table 8-5: G123 Unit 2 Marine Shell Materials 

Level Family Species Food (Y/N) Intact Broken Burned Total Weight 

Surface Fasciolariidae Fasciolaria trapezium Y           

Surface Potamididae Terebralia palustris Y 2 2 2 2 22 

Surface Turbinidae  Turbo coronatus Y           

Surface Cypraeidae Cypraea annulus Y 1     1 0 

Surface Neritidae Nerita undae Y (starvation)         5 

Surface Turbinidae  Y 4 1 1 5 4 

Surface Chitonidae Onithochiton literatus Y 8 2 1 10 5 

Surface Glycymeridae Gycymeris connollyi Y   2   2 6 

Surface Mytilidae Mytilus galloprovincialis Y   2   2 0 

Surface Achatinidae Achatina achatina N 1     1 0 

1 Fasciolariidae Fasciolaria trapezium Y   4 1 20 315 

1 Potamididae Terebralia palustris Y 4 7   8 135 

1 Chitonidae Onithochiton literatus Y 18 2   20 11 

1 Achatinidae Achatina achatina N 1     1 3 

1 Murex Chicoreus austramosus Y 1 4   4 267 

1 Strombidae Lambis lambis N   1   1 22 

1 Mytilidae Mytilus galloprovincialis Y 1     1 4 

1 
Lucinidae 

(types) 
 Unknown         7 

1 Turbinidae Turbo coronatus Y   1   1 18 

1 Mytilidae Mytilus galloprovincialis Y   1   1 0 

1 Naticidae  Y         54 

2 Fasciolariidae Fasciolaria trapezium Y   2   2 201 
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2 Potamididae Terebralia palustris Y 1 4   4 124 

2 Murex Chicoreus austramosus Y           

2 Chitonidae Onithochiton literatus Y 52 1   67 46 

2 Neritidae Nerita undae Y (starvation)         72 

2 Littorinidae  N   1   5 10 

2 Muricidae Purpura panama N   1   1 23 

2 Turbinidae Turbo coronatus Y 2 3   4 68 

2 Buccinidae  N 2     2 5 

2 Muricidae Purpura panama N         18 

2 Littorinidae  N 15 7   22 48 

2 Strombidae Lambis lambis N         63 
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G123 Unit 3:10 Unit 3 is located 250m to the Northeast of G123 Unit 1 and contained 

three stratigraphic levels of cultural material (Figure 8-7). This unit was subsampled after 

level 2 due to a substantial decrease in material culture density. The surface contained a 

few small marine shells, and a heavy fraction of soil was taken as a sample. Level 1 

revealed a myriad of faunal remains, including fish bones and marine shells, as well as 

charcoal, which dates to 549-509 cal. BP. Marine shells represent a variety of species, 

some of which are edible and others of which are not used as food sources. Additionally, 

there was a circular feature at the north-central boundary of the excavation unit that was 

defined by extremely compact soil with a darker brown color (10YR 5/3) (Figure 8-8). 

Two soil samples were taken from the compacted area. 

  

Figure 8-7: Profile wall of G123 Unit 3. Colors correspond with munsell color codes 
recorded during excavation (Surface = 2.5Y 7/1; Level 1 = 10YR 7/1; Level 2 = 10YR 

 
10 This unit was originally surveyed as site G-90, which was identified as high likelihood of containing 

archaeological deposits by Davis et al. (2020). 
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7/3; Level 3 = 2.5Y 8/4). 3D box shows dimensions of excavation unit and colored 
directional abbreviations correspond with sections of the drawing. 

 

Figure 8-8: Photo of concreted soil layer found in G123 Unit 3. 

Level 2 of the excavation unit revealed three more in situ marine shells that 

comprise both food and non-food sources, including several Nerita undae shells which are 

edible but not a preferred food source in the region today (Table 8-6; Supplemental Figure 

F-4). Charcoal recovered from this excavation level dates to 495-331 cal. BP and a heavy 

fraction of soil was taken. Level 3 contains five more marine shells, of which four are edible 

species (one of which is Nerita undae). Additionally, some crab bones were recovered, 

and the total number of cultural materials drops significantly. We concluded the excavation 

once cultural materials were no longer present. 
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   Table 8-6: G123 Unit 3 Marine Shell Materials 

Level Family Species Food (Y/N) Intact Broken Burned Total Weight 

Surface Fasciolariidae Fasciolaria trapezium Y   1   1 67 

Surface Chitonidae Onithochiton literatus Y 5     5 3 

Surface Turbinidae Turbo coronatus Y   2   2 20 

Surface Neritidae Nerita undae Y (starvation)         6 

1 Neritidae Nerita undae Y (starvation) 4     4 78 

1 Strombidae Lambis lambis N   1   1 107 

1 Cassidae Cypraecassis rufa N   2   2 109 

1 Turbinidae Turbo coronatus Y   7   7 75 

1 Fissurellidae (types)  N 1     1 0 

1 Achatinidae Achatina achatina N 3 1   5 16 

1 Chitonidae Onithochiton literatus Y 44 2   48 35 

1 Unknown  Unknown   2 1 2 183 

1 Bursidae (types)  Y 2 3   3 407 

1 Murex 
Chicoreus 

austramosus 
Y   1   1 93 

1 Fasciolariidae Fasciolaria trapezium Y   2   2 333 

2 Bursidae (types)  Y   3   3 76 

2 Achatinidae Achatina achatina N 12 4   16 24 

2 Strombidae Lambis lambis N         10 

2 Chitonidae Onithochiton literatus Y 21     21 15 

2 Neritidae Nerita undae Y (starvation) 5 2   7 30 

2 Neritidae Nerita albicilla N 1 2   3 7 

3 Achatinidae Achatina achatina N 13 3   16 31 
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3 Neritidae Nerita undae Y (starvation) 3 2   5 17 

3 Turbinidae Turbo coronatus Y 1 1   1 14 

3 Chitonidae Onithochiton literatus Y 5 1   6 4 

3 Murex 
Chicoreus 

austramosus 
Y         7 
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G130 (BELA): This site lies on top of coastal sand dunes that are ~30m from the beach 

and ~80m from the shoreline to the immediate SW of the village of Belavenoka. The 

surface of the site was littered with ceramics and marine shells, along with smaller 

quantities of faunal materials, coral, metal, and burnt stones.  

In 2020, one 1m X 1m excavation unit was opened in the surveyed area which 

extended to a depth of 89cm and consisted of three stratigraphic layers (Figure 8-9). The 

first level of the excavation revealed dozens of in situ artifacts, including ceramic sherds, 

marine shells, metal, charcoal, elephant bird eggshells, and faunal materials. This level 

contained the greatest number of artifacts. The second excavation level yielded more 

ceramics, faunal remains, marine shell, elephant bird eggshell, and charcoal. The third 

and final excavation level produced only marine shell. Soil samples were taken from each 

level of the unit.  

  

Figure 8-9: Profile wall drawing of G130. Colors correspond with munsell color codes 
recorded during excavation (Surface = 10YR 7/2; Level 1 = 10YR 4/2; Level 2 = 10YR 
6/2; Level 3 = 7.5YR 7/4). 3D box shows dimensions of excavation unit and colored 
directional abbreviations correspond with sections of the drawing. 
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Charcoal from this site dates to between 283-0 cal. BP, with a mean age estimation 

of occupancy between 100 and 180 cal. BP. The people who occupied this site appear to 

have relied on fishing and marine resources. Given its proximity to the modern village of 

Belavenoka, it speaks to the persistence of human presence in this region for the past 

several hundred years with similar subsistence strategies and environmental exploitation 

patterns as practiced today.    

G58 (MOROY): This site is located on a thin strip of coastal beach that sits adjacent to a 

dense mangrove forest to the east (Figure 8-1). The surface was littered with materials, 

primarily elephant bird eggshells and shell beads (see Appendix B Supplemental Table 

1). A single 1m X 1m excavation unit was opened on an area where we recovered 

numerous surface materials, including shell beads and ceramics. Roots were present 

throughout the unit (Figure 8-10). The first stratigraphic level revealed cultural materials, 

including: ceramics, faunal material, and marine shells. The second (and final) level was 

limited to elephant bird eggshell. Some of the faunal and eggshell material was burned, 

potentially evidence of human consumption.  

  

Figure 8-10: Profile wall drawing of G58. Colors correspond with munsell color codes 
recorded during excavation (Surface = 10YR 8/2; Level 1 = 2.5Y 2/8 (white); Level 2 = 

    

    

 

 

  

  
  

    

          
    

       

       

       



 

205 

 

10YR 8/2). 3D box shows dimensions of excavation unit and colored directional 
abbreviations correspond with sections of the drawing. 

Based upon the surface deposit context, it is possible that the area served as a 

nesting site for elephant birds (Aepyornithidae sp.) and was later occupied by human 

communities at some point during the last 1500-2000 years. The length of occupation is 

uncertain; however, given the number of shell beads identified during surface surveys of 

areas adjacent to the excavation unit (see Davis et al. 2020), it is possible that the area 

was a site of moderate-to-long-term occupation. Additional excavation units in adjacent 

areas might help elucidate this question.  

G134 (Antsaranasoa): This site yielded the greatest number of excavation levels, totaling 

1.8m in depth (Figure 8-11). A 1m X 2m unit was opened at one location of the site that 

contained numerous surface deposits consisting of ceramics and marine shells. 

 

Figure 8-11: Profile wall drawing of G134. Drawing was created using field photographs 
but not during the excavation due to wall collapse. Colors correspond with munsell color 
codes recorded during excavation (Surface = 2.5Y 8/1; Level 1 = 2.5Y 7/1; Level 2 = 
2.5Y 8/1; Level 3 = 10YR 7/1; Level 4 = 10YR 7/1; Level 5 = 2.5 YR 7/1; Level 6 = 7.5YR 
7/1; Level 7 = 2.5Y 8/2; Level 8 = 2.5Y 6/1). 3D box shows dimensions of excavation unit 
and colored directional abbreviations correspond with sections of the drawing. 
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Level 1 of the excavation contained a lot of root activity, which was largely confined 

to the top of the level. An abundance of artifacts were recovered, including ceramic sherds, 

animal bones (marine and terrestrial fauna), marine shell, metal, and charcoal. All 

ceramics recovered from this level were undecorated body sherds. Nine charcoal pieces 

were recovered in situ from level 1, all of which indicate a median occupation period of 

between 40 and 120 cal. BP.  

Level 2 of the unit is defined by the same soil matrix and undecorated ceramics, 

metal, fishbones, marine shells, and charcoal were recovered. A soil sample and 5 pieces 

of charcoal were recorded in situ throughout the unit level. Charcoal suggests a median 

occupation time of between 104 and 188 cal. BP, with one exception of a sample that 

dates to 3000 – 2800 cal. BP. This is an extreme outlier, however, and should not be 

trusted as an accurate age of this context. 

Level 3 begins to transition to a darker matrix (10YR 7/1) and is the start of two 

features with a darker coloration. Feature 1 (10YR 6/1) appears at a depth of 57cm, and 

Feature 2 (10YR 5/1) appears at 65cm in depth (Figure 8-12). These two features are 

defined by a mass of marine shells and concreted sediment, Feature 1 in the center of the 

unit, and Feature 2 spans most of the level, with clusters near the SE and NW corners. 

Both features appear to be related to cooking activities and are likely remnants of a fire pit 

or hearth. Charcoal was recovered from each of these features. The top of Feature 1 has 

a mean age of 185 cal. BP, and the top of Feature 2 has a mean age of 108 cal. BP. 

Ceramics recovered from level 3 display shell combing, including body and rim sherds. 
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(Figure 8-13a).

 

Figure 8-12: Surface of Feature 1 (Left) and Feature 2 (Right) which are defined by 
concreted and burnt shell material. Outlines of each feature indicated by dotted white 
line.  

 

Figure 8-13: Drawings of ceramic rim sherds recovered from G134. A: shell combed 
sherds recovered from Level 3. B: incised and shell combed sherds recovered from 
Level 5. C: incised and punctated sherds recovered from Level 6. D: incised sherd 
recovered from Level 7. E: punctated and incised sherds recovered from Level 8. 
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Level 4 produced a large quantity of fishbones, as well as some ceramics, metal, 

marine shells, and charcoal. Ceramics are all body sherds and display burnishing and 

surface treatments, as well as some decorative shell combing and various mineral and 

marine shell inclusions. Feature 2 continues on the NW corner of the unit. Charcoal dates 

this level to a median age of between 102 and 185 cal. BP. 

Level 5 contains ceramics, fishbones, and marine shells, as well as charcoal, but 

no metal is recovered from this point. 10 pieces of charcoal were recovered in situ from 

this level. Ceramics consist of shell combed style as well as some parallel incising, 

indicating earlier occupation periods (~16th-18th centuries; Figure 8-13b). This aligns with 

radiocarbon dates obtained from charcoal in this level, which have a median age of 

between 104 and 187 cal. BP. Ceramics also display a variety of manufacturing methods 

including land-shell and mineral inclusions. Feature 2 continues at this level and begins to 

transition to a darker, ashy deposit. 

Level 6 contains a continuation of Feature 2, which includes burned fishbones and 

ceramics. Ceramics are also found on the NW wall of the unit. Ceramics include a variety 

of styles, and consist of shell combing, incising, and circular punctations (Figure 8-13c). 

The level itself is likely a multicomponent layer consisting of material spanning several 

hundred years, as shell combing persists from the 18th-20th centuries, but incising and 

circular punctation persists from the 9th-18th centuries. Eight charcoal pieces were 

recovered in situ from this level, and they date to a median age of between 102 and 296 

cal. BP. 

Level 7 contained ceramic sherds, fishbones and unidentified terrestrial faunal 

remains, and marine shells. Ceramics consist of circular punctations, incising, and shell 

combing decorative styles (Figure 8-13d). Inclusions include red, white, and yellow 

minerals, coral, sand and terrestrial shell. Feature 2 concludes on the NW corner of unit. 
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Only two pieces of charcoal were recovered from this level (significant decrease from 

previous levels) and yield median dates between 185-187 cal. BP. 

Level 8 is the last level excavated in this unit and contained numerous ceramics, 

bones, marine shell, and charcoal. We also recovered a lithic blade, in situ at the very 

bottom (166 cm) of this excavation level (Figure 8-14). The object appears to be composed 

of brown chert, with thinner parts of the blade becoming somewhat translucent. Its 

composition appears similar to other lithics recovered in the northern parts of the island 

(see Dewar et al. 2013). Ceramics consist of circular punctation, incising, and combing 

(Figure 8-13e). Two in situ charcoal pieces were recovered. The first, recovered at 129cm, 

has a median date of 185 cal. BP. The second, recovered at 144cm, has a median date 

of 756 cal. BP. Cultural material becomes scarcer between these two charcoals and there 

is a possibility that there are hiatuses in cultural activity from this point on in the unit, 

suggesting periods of time when humans did not occupy this site between ca. 200 – 800 

cal. BP. Our Bayesian age-depth accumulation model (Figure 8-4) estimates that the lithic 

recovered at 166cm dates to between 728 and 1235 cal. BP (Figure 8-15). Before 

beginning excavation on Level 9, the wall of the unit collapsed, and we suspended work 

at this unit. We later returned to the site and excavated Level 9 and no cultural materials 

were recovered. 
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Figure 8-14: Bayesian age estimation of the depth where the lithic blade was recovered 
from Level 8 of G134 Unit 1. 

 

Figure 8-15: Shows the distribution of age estimates for a depth of 166cm based on the 
Bayesian age-depth estimation model reported above (Figure 8-4). Blue line shows the 
95% confidence range, green dot shows the median age estimation (982 cal. BP), and 
red dot shows the mean age estimation (981 cal. BP). 

Overall, G134 was likely a fishing village that was consistently occupied for the last 

250 years. Prior to 300 cal. BP, there appears to have been more infrequent, but still 

extensive human presence that was interrupted by a series of hiatuses that lasted 
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between 30 and 300 years each (between 270-300 cal. BP, 340-590 cal. BP, and 700-

950 cal. BP). The exact nature of these later occupations and hiatuses is uncertain given 

the scarcity of radiocarbon dates from these levels, but nevertheless, the site appears to 

be an area that saw extensive, long-term occupation that partially predates ceramic use 

on Madagascar. 

Ampasimara (G-15-2020): The site is located just inland from the coast between the 

Fagnemotsy Bay [Baie des Assassins] (to the west) and a mangrove forest (to the east) 

(Figure 8-1). During ground surveys of the area a ceramic sherd and an abundance of 

worked marine shells were recovered. We excavated one 1m X 1m unit at this site (Figure 

8-16). We subsampled the unit beginning in level 4 due to a significant decline in the 

density of recovered material culture.  

 

Figure 8-16: Profile wall drawing of G-15-20. (Surface = 2.5Y 6/1; Level 1 = 7.5YR 7/2; 
Level 2 = 2.5Y 5/3; Level 3 = 10YR 7/8; Level 4 = 5Y 8/2; Level 5 = 10YR 8/3). 3D box 
shows dimensions of excavation unit and colored directional abbreviations correspond 
with sections of the drawing. 
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The site resides adjacent to the shoreline, and its surface contained two in situ 

marine shell tools, one made from Nassariidae (which is not used as a source of food) 

and the other made from Turbinidae (which is used as a food source among modern and 

historic populations in this region) (Table 8-7). The diversity and number of marine shells 

increases at each level (Supplemental Figure F-5). In Level 1, six worked marine shells 

were recovered, as well as two burnt shells from mangrove species known to be food 

sources (Terebralia palustris). In Level 2, we recovered (in situ) 3 pieces of charcoal, 1 

undecorated ceramic sherd, fishbones, and 14 marine shells, including a higher 

abundance of these burnt mangrove shellfish remains (Terebralia palustris). Three 

additional stratigraphic levels were excavated (3, 4, and 5) which produced no cultural 

materials. Based on this evidence, it appears that G-15-2020 was a fishing camp, likely a 

seasonal occupation that has a mean occupation date between 113 cal. BP and the 

present. With proper marine reservoir corrections, burnt shell material may provide a 

useful means of acquiring additional radiometric dates. 
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 Table 8-7: G-15-2020 marine shell materials. 

Level Family Species Food Source (Y/N) Intact Broken Burned Total Weight (g) 

Surface Nassariidae  N 3 1  4 1 

Surface Turbinidae  Y    2 1 

Level 1 Turbinidae Turbo coronatus Y 4 1 1 5 45 

Level 1 Potamididae Terebralia palustris Y  5  5 100 

Level 1 Veneridae Tivela compressa Y    1 1 

Level 1 Achatinidae Achatina achatina N    1 1 

Level 1 Fasciolariidae  N    1 1 

Level 1 Turbinidae  Y  2 1 6 3 

Level 2 Turbinidae Turbo coronatus Y 4 2 1 6 68 

Level 2 Potamididae Terebralia palustris Y  2  2 74 

Level 2 Arcidae Barbatia foliata Y  1  1 43 

Level 2 Turbinidae  Y 6   6 6 

Level 2 Neritidae Nerita albicilla N    1 1 

Level 2 Littorinidae  N  3  3 1 

Level 2 Carditida(types)  Y  1  1 7 
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SAVABO: This site is located approximately 30m from the modern shoreline, and about 

700m northwest of the modern village of Tampolove. This location was investigated by 

MAP in previous years, and this exact location was ranked as highly likely to contain 

archaeological materials by Davis et al. (2020). We excavated two 1m X 1m units (Figures 

8-17 and 8-18). Both units were subsampled in their lower levels due to significant 

decreases in recovered cultural material density. 

Unit 1: The surface of unit 1 contained marine shell material and burnt rock. In level 1, 

numerous ceramics, marine shell tools, fishbones, and charcoal material were recovered, 

in addition to more burnt rocks. Level 2 produced more ceramics and a substantial amount 

of faunal remains and worked marine shells. Additionally, charcoal was recovered in situ 

along with elephant bird eggshell and burnt rocks. Level 3 produced far less material, 

consisting of faunal remains and marine shell. Level 4 contained no cultural artifacts. All 

ceramics recovered are undecorated and soil samples were taken from all excavation 

levels.  

 

Figure 8-17: Wall profile for SAVABO Unit 1. Colors correspond with munsell color 
codes recorded during excavation (Surface = 5Y 6/2; Level 1 = 10R 6/1; Level 2 = 2.5YR 
5/1; Level 3 = 5YR 7/2; Level 4 = 7.5YR 8/4). 3D box shows dimensions of excavation 
unit and colored directional abbreviations correspond with sections of the drawing. 
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Unit 2: Unit 2 is located ~22m south of Unit 1. The first layer of the excavation produced 

ceramics, faunal, and marine shell artifacts, and three worked marine shells were 

recovered in situ. Level 2 unveiled more faunal and marine shell material, in addition to 

charcoal. Level 3 only produced a few marine shell artifacts and Level 4 was devoid of 

cultural material. Soil samples were taken from each level of the unit. Like Unit 1, all 

recovered ceramics were undecorated. 

 

Figure 8-18: Wall profile for SAVABO Unit 2. Colors correspond with munsell color 
codes recorded during excavation (Surface = 5Y 6/2; Level 1 = 2.5YR 7/1; Level 2 = 
7.5YR 6/2; Level 3 = 10YR 7/3; Level 4 = 10YR 8/4). 3D box shows dimensions of 
excavation unit and colored directional abbreviations correspond with sections of the 
drawing. 

It appears that this site was an earlier extension of the present-day village of 

Tampolove that is situated just to the southeast of this area. There is evidence of burning 

activity which is likely related to subsistence on marine and terrestrial foodstuffs. 

Discussion 

Excavations reported above demonstrate a widespread and long-lived occupation of the 

Velondriake area dating back to approximately 700-1200 BP. Most archaeological 

deposits found in southern Madagascar are quite shallow, extending only 20-30cm in 

depth before sterile soil and date within the last 200-300 years (e.g., G-15-20, SAVABO). 

However, several areas excavated here contain evidence of human presence from earlier 
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periods (e.g., G123 Unit 3) and longer-lived occupations (e.g., G134). One radiocarbon 

date from G134 produced an age ca. 3000 cal. BP, but this is an extreme outlier and 

should not be trusted as an accurate age of this context. 

The presence of potential starvation foods (i.e., foodstuffs primarily consumed 

during times of stress) at sites like G123 may speak to food shortages caused by erratic 

climatic conditions. During Unit 3’s occupation (ca. 550 – 330 cal. BP), the climate in this 

region was in a state of transition from wetter to drier conditions (Faina et al. 2021; also 

see Chapter 7, Figure 7-2). Within Unit 1 and Unit 2, starvation foods are even more 

abundant. While we do not have radiocarbon dates for G123 Unit 1, it is located directly 

adjacent to Unit 2 and may contain contexts that are contemporaneous with Unit 2 which 

dates to between 240 and 30 BP. This period also overlaps with drier climatic conditions 

(Faina et al. 2021) which could have disrupted terrestrial resources and subsequent 

reliance on marine environments for subsistence. A great deal of historical ecological work 

can derive from the assemblages reported here, and future studies will seek to establish 

a robust understanding of environmental resource usage patterns over time and their 

correlation with climate change. 

Material culture recovered from these excavations can provide the basis for 

several important future studies of the Velondriake region. There remains ample work to 

identify faunal materials present from archaeological contexts on Madagascar, and  

Danielle Buffa is currently developing a digital reference collection for zooarchaeological 

analysis for this area (Buffa 2019). Likewise, a great deal of work has been done by 

Kristina Douglass (2017; also see Douglass, Morales, et al. 2019) on developing a similar 

reference for marine assemblages from SW Madagascar, and the materials generated by 

these excavations can be incorporated into a regional analysis of marine environmental 

exploitation patterns over the past several centuries.  
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The ceramic assemblage within G134 gives us additional insight to ceramic 

chronologies for this region and provides evidence of a diverse collection of decorative 

styles ranging from punctations and incising in the earlier phases of the site to shell 

combing in the latter phases of the site’s occupation. 14C dates from contexts with shell 

combed support prior research (Douglass 2016) suggesting these decorative styles date 

to the last 200-300 years. 14C dates from contexts with punctated and incised ceramics 

further support the determination that these decorative styles predate shell combing 

(Douglass 2016). The ceramics recovered here and elsewhere in the Velondriake area 

will subsequently enhance our understanding of cultural exchanges, population 

movements, and social networks in this region and their changes over time (e.g., Davis et 

al. in review; Chapter 7).  

The discovery of lithic material from G134 is especially significant, as there have 

been no other stone-tools recovered from the SW of Madagascar – with the exception of 

gunflints that likely date to the 18-20th centuries (Douglass 2016). The recovered object 

appears to be a blade scraping tool. There is a possibility of it being a spearpoint, but the 

fracturing appears too rectangular to have worked well in this capacity (Kenneth Hirth, 

pers. comm. 2021). Given that no other debitage was recovered (i.e., flakes, cores, etc.), 

it seems unlikely that the site represents a lithic manufacturing area. 

Stone tools have been discovered in only two other sites on Madagascar, both 

from the northeastern coast (Dewar et al. 2013). Debate proceeds on the antiquity of the 

lithics found in the northeast of Madagascar (e.g., Anderson 2019). The lithic identified in 

this dissertation appears to predate all recovered ceramics within site G134 based on its 

stratigraphic placement. Bayesian Accumulation Age-Depth modeling dates the lithic’s 

context to a median age of 982 cal. B.P. (Figure 8-15). A secondary model constructed 

using only the highest quality 14C dates (class 1 and 2) provided a similar result (median 
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age of 970 cal. BP; Supplemental Figure F-1). This period overlaps with stone-tool 

traditions recovered in Northwest Madagascar at Lakaton’i Anja and Ambohiposa (Dewar 

et al. 2013). Further study is needed to verify this age-depth estimation and to determine 

the source of the Velondriake lithic and its relation to Northwestern Malagasy stone tool 

traditions. Regardless, the discovery of lithic material in the southwest of Madagascar 

provides more evidence of stone-tool traditions on Madagascar.  

Conclusion 

This report outlines the results of a series of excavations conducted in the Velondriake 

Marine Protected Area in Southwest Madagascar between 2020 and 2021. The results 

presented here expand our understanding of the chronology of human occupation of the 

region and give insight into lithic traditions that existed in the south of Madagascar almost 

1000 years ago. Chronological information suggests that the Velondriake region was 

densely populated over the last 300 years, but lower densities of occupation persisted for 

at least 700-800 years in open air villages and campsites. Evidence from prior excavations 

in this region indicates human presence as early as 3000 B.P., with the oldest dates 

coming from rock shelter sites. This study reports only on open air sites, which tend to be 

younger based on prior work in this region, but still demonstrates human occupations that 

stretch back approximately 1000 years. In the future, the materials excavated by this study 

can serve to expand our knowledge of dietary patterns, resource exploitation, migration, 

trade, stone-tool use, and social networks throughout the Velondriake region. 

Furthermore, it can help to improve our understanding of Velondriake within the broader 

context of Madagascar’s archaeological record. 
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Chapter 9: Conclusion 

 

The archaeology of the southwest of Madagascar was recently described by Parker 

Pearson et al. (2010:542) as an “archaeological desert”, and much remains to be 

understood about early human settlement here and elsewhere on the island. Douglass 

(2016) provided some of the first evidence for chronologies of human occupation in the 

Velondriake region where this dissertation centers. This dissertation has built on this prior 

work by developing new methods and theoretical frameworks to expand archaeological 

understanding of the Velondriake Marine Protected Area (VMPA). The approaches 

presented carry great potential to be applied in other regions of Madagascar. In this short 

chapter, I will summarize the most significant findings of this research and present a 

roadmap of future work that remains to address questions of human settlement in this 

region.  

Theoretical and Practical Contributions 

The study of settlement patterns has been a long-lasting point of inquiry within 

archaeological investigations for over a century (see Kowalewski 2008), and a great deal 

of theoretical and methodological work has helped advance this area of study throughout 

the years. Within this dissertation, I put forth a new approach to holistically investigate 

settlement patterns in the archaeological record. I approach the question of settlement 

distribution from a perspective of feedback/cause-and-effect loops and use both 

ecological drivers and consequences of human activity to identify and understand 

settlement distributional patterns on landscape scales. It is important, in my view, to 

understand not only why people choose to leave or stay in an area, but also what the long-

term consequences of those choices have on environmental systems beyond our species. 

To place humans within a broader Earth-systems context, it is vital that we approach our 

species as one part of a connected environmental system, one in which we function within 
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– and not separated from – the rest of the natural world (Ellis 2021; Ellis et al. 2021). This 

ontological position will allow archaeological studies of human settlement behavior to 

better inform pivotal questions concerning human-environment dynamics and their role in 

sustainability issues, resource conservation, and societal impacts of climate change. 

By using this conceptual framework, this dissertation was able to generate a 

multixproxy dataset that permitted for a robust interpretation of the geographic and 

temporal patterns of settlement and mobility strategies within the VMPA, as well as their 

proximal drivers and long-term effects on the ecological systems of southwest 

Madagascar. Each individual chapter presents novel methodological contributions to 

answer one or more parts of this complex issue, but only by combining the results of each 

of these investigations (i.e., spatial statistical models, remote sensing, survey and 

excavation, paleoclimate records, radiocarbon dates, and network analysis) do we 

produce a holistic picture of human-environment dynamics. 

The theoretical innovation put forth by this dissertation has also resulted in 

significant methodological advances. The spatial modeling and remote sensing protocols 

developed here have rapidly expanded archaeological survey and prospection efforts to 

locate cultural heritage sites and interpret settlement distribution patterns. As 

demonstrated in Chapters 4 and 6, the use of each approach separately performs well, 

and by looking at places predicted by both approaches, we find the greatest success. 

Furthermore, by approaching archaeological prospection projects from an explicit 

theoretical framework, this dissertation contributes significantly to archaeological remote 

sensing, which has long been challenged by a disconnect between methods and 

theoretical perspectives (e.g., Davis and Douglass 2020; Thompson et al. 2011). 



 

221 

 

Settlement History of the Velondriake Region of Southwest Madagascar 

The results of this dissertation program have greatly expanded our understanding of the 

human occupancy of the VMPA in southwest Madagascar, as well as the human history 

of the island as a whole. Remote sensing techniques have allowed for rapid assessment 

of over 1000 km2 of land area in southwest Madagascar, leading to the documentation of 

hundreds of new archaeological deposits throughout the VMPA. Furthermore, we now 

have a better grasp on the driving forces behind human decision making in this region for 

the last several millennia. In addition to environmental constraints, social connectivity and 

community defense were significant contributing factors to the decisions of southwest 

Malagasy communities about where to situate themselves on the landscape. The remote 

sensing and spatial analyses conducted here further reveal the long-term ecological 

consequences of prolonged human occupation, consisting of altered vegetation and soil 

properties throughout much of the study area. 

Excavations carried out at select locations provided valuable information 

pertaining to the nature and duration of human occupancy in the southwest of 

Madagascar. The excavations cover a broad swath of the Velondriake region, consisting 

of open-air village sites from the northern, central, and southernmost reaches of the study 

area. Evidence provided from charcoal and zooarchaeological assemblages document an 

extensive use of trees as fuel sources for cooking, extensive marine resource exploitation, 

especially of mangrove species, and the use of tubers, cacti, and shrubs in dietary 

contexts, as charred remnants of such taxa were recovered at numerous excavated 

locations, including within fire-pit features (e.g., G134). 

The presence of starvation foods (e.g., Nerita undae) at sites like G123 signify 

potential responses to periods of environmental downturn. Climatological conditions 

during occupation phases of G123 Unit 3 demonstrate shifts from very wet conditions (ca. 
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550 – 450 cal. BP) towards drought conditions (ca. 450 – 300 cal. BP). G123 Unit 2 

overlaps with a similar shift from wetter to drier conditions (ca. 240 – 0 cal. BP). Such 

climatological contexts may have reduced the availability of other marine resources and 

caused food shortages. By examining these zooarchaeological assemblages in closer 

detail we can learn a great deal about the diets of different communities in Velondriake 

over the past several hundred years. This will constitute a future research project. 

Excavations also provided rare evidence of stone-tool use in the southwest of 

Madagascar. A lithic blade recovered from the bottom of the excavation unit at G134 is 

located more than 10 cm below any other cultural materials (e.g., ceramics) and likely 

constitutes an early presence of foragers in the Velondriake region that predates the 

earliest AMS dates for the site (792-722 cal. BP). Bayesian age-depth modeling suggests 

that the context of the lithic dates to between 728 and 1235 cal. BP. This discovery is 

especially significant in light of the ongoing debate over when humans first arrived on 

Madagascar and the nature of these populations. The presence of a lithic tradition in the 

southwest with some similarities to a stone-tool tradition found in the north of Madagascar 

dating to between 1000 and 4400 B.P. (see Dewar et al. 2013) adds to evidence of 

sustained and widespread human occupancy on the island for the past several millennia 

(e.g., Douglass, Hixon et al. 2019).  

Finally, based on spatial statistical and social network analyses, we have evidence 

to support the possibility that Malagasy communities in the Velondriake region developed 

social networks that were resilient to a slew of environmental and sociopolitical shifts over 

the past millennium. As such, the nature of settlement patterns and mobility strategies 

among coastal foragers has served as an adaptive mechanism to risk posed by external 

pressures like climate change, resource availability, and political violence. This holds 

important implications for future efforts towards sustainability and resilience in the face of 
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increasing climate-change related impacts to coastal communities on Madagascar and 

elsewhere. By integrating traditional methods of mobility-based livelihood strategies into 

conservation policies, resource use can be better managed in ways that aid biodiversity 

efforts while minimizing the impact to Malagasy communities who rely on these resources 

for survival.  

Future Research Avenues 

The findings of this project provide new insight into the timing, drivers, impacts, and 

placement of ancient coastal settlement of Malagasy communities along the SW coast of 

Madagascar. Our knowledge of the archaeological record in this region has been greatly 

expanded due to the work conducted thus far, and this opens the door for new and exciting 

avenues of research that can build upon or make use of the data generated by this study.  

For example, in addition to in-depth analyses of faunal assemblages recovered 

from excavations conducted here, such materials can also enhance our ability to derive 

chronological information from archaeological contexts. Research is warranted to 

establish marine reservoir corrections for marine shells in Velondriake, which comprise a 

portion of nearly every archaeological site in the area. Hopefully, this dissertation will allow 

for future scholars to undertake such investigations to further our understanding of 

Malagasy history and archaeology. It is clear that the methods deployed in this dissertation 

have aided in the discovery of significant cultural contexts that will help to shape our 

understanding of Malagasy history. As several studies suggest, the timeline for human 

occupation of Madagascar is likely longer than previously assumed (Douglass, Hixon, et 

al. 2019). 

Among the many avenues for continued investigation, there are two major projects 

underway: one consists of a paleoclimate reconstruction program, and the other focuses 

on land-use comparisons between different socioeconomic groups.  
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Understanding the relationship between climatic change and human mobility 

using high-resolution paleoclimate proxies 

Within this dissertation, I have laid the groundwork for future studies of human-

environmental interaction by generating a robust and systematic archaeological dataset 

of past settlement locations in the Velondriake region. Such datasets are crucial for 

understanding landscape scale dynamics of human-environment interaction, but also 

require highly resolved paleoclimatic records to model the effects of environmental change 

on human behavior (d’Alpoim Guedes et al. 2016; Davis 2019b). Extensive paleoclimate 

work has been conducted on Madagascar and its surrounding regions (e.g., Burney 1999; 

Crowley et al. 2017; de Boer et al. 2014; Dewar and Richard 2007b; Douglass and Zinke 

2015; Godfrey et al. 2019; Grove et al. 2012; Hixon et al. 2018; Kull 2000; Kull et al. 2012; 

Scroxton et al. 2017; Virah-Sawmy et al. 2009, 2010; Voarintsoa et al. 2017; Zinke et al. 

2004). However, no studies on Madagascar have yet applied marine paleoclimate records 

to archaeological data. For coastal populations, marine records are likely to be more 

important for understanding environmental effects on human mobility patterns, as 

discontinuity between terrestrial and marine proxies can occur (Piermattei et al. 2017). 

Additionally, there are few studies which make use of multiple proxies simultaneously 

(e.g., Voarintsoa et al. 2017). Multiple proxy sets (e.g., multiple isotopes or multiple 

material types) have improved environmental and climatological reconstruction (García-

Granero et al. 2015; Hausmann et al. 2011; Kar et al. 2016; Li et al. 2010; Mügler et al. 

2010). 

In ongoing work funded by the National Science Foundation and the National 

Geographic Society, I am working with colleagues on Madagascar and in the U.K. to 

create a multiproxy paleoenvironmental dataset from fossil corals. Corals can provide 

seasonal, annual, and decadal records of precipitation, temperature, and land-use via 

stable isotopes and trace element signatures contained in these organisms (Grove et al. 
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2013, 2012; Hennekam et al. 2018). Furthermore, ancient, fossilized corals present in 

some regions may allow for these records to extend back thousands of years (Douglass 

and Zinke 2015). 

During this dissertation project, I helped to lead and conduct marine surveys for 

living and fossil Porites corals located along the coastline surrounding Andavadoaka, a 

village at the center of the study area. A total of 9 corals have been identified as targets 

for an upcoming coring operation which are located in close proximity to the study region 

and known archaeological deposits (Figure 9-1).  

 

Figure 9-1: Map of corals identified for coring along the coast of Velondriake. 

Fossil Porites boulders will provide snapshots of seasonality for several decades 

over the Late Holocene. With funding provided by National Geographic, our team will 

conduct a coral coring operation to collect necessary samples for isotope and trace 

element analysis. Fossil coral data generated here will provide researchers the ability to 

investigate long- and short-term environmental events, the effects of human land-use on 

ecological systems, and the effects of environmental fluctuation on biodiversity through 

time. As such, this project will produce data that is of use to Africanists across many 
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disciplines focused on environmental research questions. Subsequently, these data will 

improve our understanding of human-climate dynamics over a long timescale, placing us 

in a better position to evaluate modern day climate events and their potential societal 

consequences. 

The legacy of ancient niche construction among foragers, herders, and farmers in 

southwest Madagascar 

A secondary ongoing project that will build off this dissertation focuses on niche 

construction activities (i.e., ecosystem engineering and landscape modification) and their 

long-term effects on landscapes, building directly off the work of Chapter 7 (Davis and 

Douglass 2021). This project, funded by the Spatial Archaeometry Research 

Collaborations (SPARC), an NSF funded program at the University of Arkansas, is 

focused on the legacy ecological effects of pastoralism in the Namonte Basin, located 

inland from Velondriake (Figure 9-2).  
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Figure 9-2: Map of the Namonte Basin in southwest Madagascar. The red box shows 
the extent of the study area covered by the SPARC funded project, encompassing ~100 
km2 of the Namonte Basin region. 

The project specifically aims to investigate landscape-scale environmental 

modifications resulting from pastoralist activities using multispectral remote sensing 

methods. Specifically, this project aims to understand the landscape as a system, rather 

than a collection of distinct anthropogenic features. As such, this research seeks to 

develop a novel remote sensing method that is tied explicitly to archaeological theory 

pertaining to landscape use, niche construction, and settlement distributions (sensu Davis 

and Douglass 2021; Chapter 7). By using a landscape approach, the project aims to 

explore the relationships between human populations and their surroundings at multiple 

scales and changes in human behavior over time and space (Anschuetz et al. 2001; Green 
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and Petrie 2018), thereby providing insight into land-use practices and their larger 

ecological effects over the past several hundred years. 

This ongoing work seeks to address several key questions, including identifying 

where pastoralist activities have been predominant and how they have impacted 

ecological systems in the past and present within southwest Madagascar over the past 

400 years. Additionally, the project will aim to compare niche construction activities and 

their geophysical signatures between different socioeconomic societies, including foraging 

and fishing communities, pastoralist herders, and agriculturalists. 

Final Thoughts 

Environmental archaeology has a long and rich history. One fundamental limitation of 

much of this prior literature, however, has been in the development of high-resolution 

datasets at the necessary scale to address central archaeological questions concerning 

human-environment dynamics (Davis 2020a). Today, with the global climate crisis that 

threatens the livelihoods of hundreds-of-millions of people, questions concerning human-

environmental interactions are even more significant (IPCC 2021). Archaeology, thus, has 

a major role to play in developing long-term solutions to environmental and climatic 

deterioration. 

As I discuss in an article published in Environmental Archaeology, “the future of 

environmental archaeological studies involves development of techniques and methods 

for reconstructing past environmental conditions… [as well as] creating a deeper 

understanding of processes that increase and inhibit resilience of human populations in 

times of environmental uncertainty” (Davis 2020a:375). This dissertation provides one 

such attempt to push towards this goal by developing geospatial methods for recording 

and interpreting past socioenvironmental systems. By so doing, the data generated here 
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can be coupled by future work to reconstruct past socioenvironmental contexts and their 

roles in shaping human communities.  
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Appendix A:  IRB Protocols Pertaining to Geophysical Data Collection at 

Penn State 
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Appendix B:  Supplemental Data for Chapter 4 

Supplemental Table B-1: Shows list of surveyed grid locations during the summer of 
2019 and materials collected from each area. Probability is given as a qualitative ranking 
(Low, Medium, High, or Null), which relates to the quantitative measurements given in 
Table 1 in the text.  

Grid # Probability Charcoal Eggshell Marine 

Shell 

Faunal Ceramics Beads Other Total 

9 Medium 0 0 2 0 0 0  2 

11 Null 0 0 0 0 0 0  0 

15 Low 0 9 0 0 0 0 
 

9 

16 Medium 0 0 0 0 0 0  0 

18 Low 0 0 1 0 0 0 
 

1 

23 Medium 0 0 0 0 0 0  0 

24 Medium 0 7 2 0 0 0  9 

25 Low 0 13 0 0 0 0  13 

26 Low 0 6 0 0 0 0 
 

6 

30 Low 0 8 5 0 0 0 
 

13 

31 Medium 0 16 10 0 3 0 
 

29 

32 Medium 0 26 3 0 4 0 
 

33 

52 High 0 0 0 0 0 0  0 

53 High 0 3 2 0 0 0  5 

54 High 0 8 7 0 0 0  15 

55 High 0 0 0 0 0 0  0 

56 Medium 0 1 3 0 0 0  4 

57 High 0 11 11 1 10 4 Burnt 

Stone 

(1) 

39 

58 High 0 68 6 0 3 7  84 

61 Null 0 0 5 0 0 0 
 

5 

62 High 0 12 0 0 0 0 
 

12 

63 Low 0 1 0 0 0 0 
 

1 

64 High 0 0 0 0 0 0 
 

0 

67 High 0 0 0 0 0 0  0 

68 High 0 0 0 0 0 0  0 

69 High 0 0 3 0 0 0  3 

70 Null 0 0 2 0 0 0  2 

71 Medium 0 5 0 0 0 0  5 

72 High 0 0 0 2 0 0 Burnt 

stone 

(1) 

3 

73 Low 0 0 1 0 0 0 
 

1 

74 Medium 0 0 0 0 0 0 
 

0 

75 Low 0 0 0 0 0 0 
 

0 
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76 High 0 2 0 0 0 0 
 

2 

88 Low 0 0 8 0 11 0 
 

19 

89 Medium 0 0 20 0 5 1 
 

26 

90 High 3 5 6 1 1 1 
 

17 

91 High 0 0 4 0 0 0 
 

4 

92 High 0 10 4 0 0 0 
 

14 

100 Low 0 5 10 0 0 0 
 

15 

101 High 0 0 0 0 0 0 
 

0 

103 Null 0 0 0 0 0 0 
 

0 

104 Medium 0 0 0 0 2 0 
 

2 

105 High 0 0 8 2 5 0 
 

15 

106 Medium 0 0 5 4 1 0 
 

10 

107 High 0 0 0 0 1 0 
 

1 

108 High 0 0 0 0 1 0 
 

1 

109 Low 0 2 7 0 1 0 
 

10 

110 Null 0 0 0 1 0 0 
 

1 

111 Null 0 0 1 0 0 0 
 

1 

113 High 0 0 1 0 0 0 
 

1 

114 Medium 0 0 0 0 0 0 
 

0 

115 High 0 0 0 0 0 0 
 

0 

116 Low 0 0 0 0 0 0 
 

0 

117 High 0 0 2 0 0 0 
 

2 

118 High 0 50 32 15 40 8 Burnt 

stones 

(2) 

149 

119 High 0 3 2 0 7 0 
 

12 

120 Medium 0 23 24 0 15 2 Glass 

(1), 

Burnt 

Stone 

(1) 

66 

121 Low 1 10 0 5 3 0 
 

19 

122 High 0 0 0 0 0 0 
 

0 

123 High 0 0 21 0 8 2 Burnt 

Stone 

(2) 

41 

124 Medium 0 1 0 0 0 0 
 

1 

125 High 0 1 3 0 1 0 
 

5 

126 High 0 0 6 0 0 0 
 

6 

127 High 0 0 2 0 0 0 
 

2 

128 High 0 2 22 0 12 1 
 

37 

129 Null 0 0 5 0 0 0 
 

5 

130 High 0 3 44 1 69 0 Coral 

(1), 

Burnt 

121 
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Stone 

(2), 

Metal 

(1) 

133 High 2 0 8 3 24 0  37 

134 Medium 1 0 11 0 62 0  75 

136 Low 0 0 9 0 24 0  34 

138 Low 0 0 0 0 0 0  0 

139 High 1 9 14 0 5 0  31 

144 High 0 0 2 0 11 0  13 

145 Medium 0 0 22 2 37 0  61 

 

Supplemental Code: Archaeological Distributional Analysis 
This R Markdown details the distributional analysis of archaeological data discussed in 
the text. The goal of this analysis was to ascertain the conformity of the data to different 
continuous distributional functions to provide evidence to support or reject an ideal free 
distribution. This document also contains confidence envelopes (95%) for the 
archaeological data and each simulated dataset. 

 
library(stats) 
library(readxl) 

## Warning: package 'readxl' was built under R version 3.5.3 

library(emdbook) 

## Warning: package 'emdbook' was built under R version 3.5.3 

library(sfsmisc) 

## Warning: package 'sfsmisc' was built under R version 3.5.3 

##  
## Attaching package: 'sfsmisc' 

## The following object is masked from 'package:emdbook': 
##  
##     lseq 

library(rmarkdown) 

## Warning: package 'rmarkdown' was built under R version 3.5.3 

setwd("C:/Users/Dylan/Documents/School-Work/Dissertation/RS_project") 
 
#load excel file containing artiact probability values 
 
prob <- read_excel("Survey_results_probability.xlsx", sheet = "Material
_Prob_Scores_R") 
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#create random sample of uniformally distributed values 
 
set.seed(1) 
 
unif_prob <- runif(245, min = 0, max = 23) 
 
#K-S distribution test between archaeological data and uniform distribu
tion with same max and min values 
ks.test(prob$Prob, unif_prob) 

## Warning in ks.test(prob$Prob, unif_prob): p-value will be approximat
e in 
## the presence of ties 

##  
##  Two-sample Kolmogorov-Smirnov test 
##  
## data:  prob$Prob and unif_prob 
## D = 0.13469, p-value = 0.02348 
## alternative hypothesis: two-sided 

#create random sample of normally distributed values 
 
set.seed(1) 
 
norm_dist <- rnorm(245) 
 
#K-S distribution test between archaeological data and normal distribut
ion data 
 
ks.test(prob$Prob, norm_dist) 

## Warning in ks.test(prob$Prob, norm_dist): p-value will be approximat
e in 
## the presence of ties 

##  
##  Two-sample Kolmogorov-Smirnov test 
##  
## data:  prob$Prob and norm_dist 
## D = 0.83673, p-value < 2.2e-16 
## alternative hypothesis: two-sided 

##create gamma distributed data 
 
set.seed(1) 
 
gamma_dist <- rgamma(n=246, shape = 1) 
 
ks.test(prob$Prob, gamma_dist) 
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## Warning in ks.test(prob$Prob, gamma_dist): p-value will be approxima
te in 
## the presence of ties 

##  
##  Two-sample Kolmogorov-Smirnov test 
##  
## data:  prob$Prob and gamma_dist 
## D = 0.7879, p-value < 2.2e-16 
## alternative hypothesis: two-sided 

##poisson distributed data 
set.seed(1) 
 
pois_dist <- rpois(n=246, lambda = 1) 
 
ks.test(prob$Prob,pois_dist) 

## Warning in ks.test(prob$Prob, pois_dist): p-value will be approximat
e in 
## the presence of ties 

##  
##  Two-sample Kolmogorov-Smirnov test 
##  
## data:  prob$Prob and pois_dist 
## D = 0.80823, p-value < 2.2e-16 
## alternative hypothesis: two-sided 

##create sample of logarithmically distributed values (using emdbook li
brary) 
set.seed(1) 
log_dist <- lseq(0.1, 24, 245) 
 
##K-S distribution between archaeological data and log distribution dat
a 
 
ks.test(prob$Prob, log_dist) 

## Warning in ks.test(prob$Prob, log_dist): p-value will be approximate 
in the 
## presence of ties 

##  
##  Two-sample Kolmogorov-Smirnov test 
##  
## data:  prob$Prob and log_dist 
## D = 0.5102, p-value < 2.2e-16 
## alternative hypothesis: two-sided 

##plotting KS distribution tests 
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##KS test with UNIFORM DIstribution 
 
U_group <- c(rep(prob$Prob, length(prob$Prob)), rep(unif_prob, length(u
nif_prob))) 
 
U_dat <- data.frame(KSD = c(prob$Prob, unif_prob), group=U_group)  
 
# create ECDF of data 
 
U_cdf1 <- ecdf(prob$Prob)  
U_cdf2 <- ecdf(unif_prob)  
 
# find min and max statistics to draw line between points of greatest d
istance 
U_minMax <- seq(min(prob$Prob, unif_prob), max(prob$Prob, unif_prob), l
ength.out=length(prob$Prob))  
U_x0 <- U_minMax[which( abs(U_cdf1(U_minMax) - U_cdf2(U_minMax)) == max
(abs(U_cdf1(U_minMax) - U_cdf2(U_minMax))) )]  
U_y0 <- U_cdf1(U_x0)  
U_y1 <- U_cdf2(U_x0)  
 
 
##Plot distribution curves without ggplot 
 
plot(U_cdf1, verticals=TRUE, do.points=FALSE, col="black", main = "K-S 
Test of Uniform Distribution", xlab="Suitability Ranking", ylab="D(x)")  
plot(U_cdf2, verticals=TRUE, do.points=FALSE, col="blue", add=TRUE)  
 
 
## creates line for maximum difference between both datasets  
 
points(c(U_x0, U_x0), c(U_y0, U_y1), pch=16, col="red")  
segments(U_x0, U_y0, U_x0, U_y1, col="red", lty="dotted") 
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##TEST WITH NORMAL DISTRIBUTION 
 
N_group <- c(rep(prob$Prob, length(prob$Prob)), rep(norm_dist, length(n
orm_dist))) 
 
N_dat <- data.frame(KSD = c(prob$Prob, norm_dist), group=N_group)  
 
# create ECDF of data 
 
N_cdf1 <- ecdf(prob$Prob)  
N_cdf2 <- ecdf(norm_dist)  
 
# find min and max statistics to draw line between points of greatest d
istance 
N_minMax <- seq(min(prob$Prob, norm_dist), max(prob$Prob, norm_dist), l
ength.out=length(prob$Prob))  
N_x0 <- N_minMax[which( abs(N_cdf1(N_minMax) - N_cdf2(N_minMax)) == max
(abs(N_cdf1(N_minMax) - N_cdf2(N_minMax))) )]  
N_y0 <- N_cdf1(N_x0)  
N_y1 <- N_cdf2(N_x0)  
 
 
##PLOT 
 
 
plot(N_cdf1, verticals=TRUE, do.points=FALSE, col="black")  
plot(N_cdf2, verticals=TRUE, do.points=FALSE, col="blue", add=TRUE)  
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# draw line between points of greatest distance  
 
points(c(N_x0, N_x0), c(N_y0, N_y1), pch=16, col="red")  
segments(N_x0, N_y0, N_x0, N_y1, col="red", lty="dotted") 

 

####TEST WITH GAMMA DISTRIBUTION 
 
##plotting KS distribution tests 
 
G_group <- c(rep(prob$Prob, length(prob$Prob)), rep(gamma_dist, length(
gamma_dist))) 
 
# create ECDF of data 
 
G_cdf1 <- ecdf(prob$Prob)  
G_cdf2 <- ecdf(gamma_dist)  
 
# find min and max statistics to draw line between points of greatest d
istance 
G_minMax <- seq(min(prob$Prob, gamma_dist), max(prob$Prob, gamma_dist), 
length.out=length(prob$Prob))  
G_x0 <- G_minMax[which( abs(G_cdf1(G_minMax) - G_cdf2(G_minMax)) == max
(abs(G_cdf1(G_minMax) - G_cdf2(G_minMax))) )]  
G_y0 <- G_cdf1(G_x0)  
G_y1 <- G_cdf2(G_x0)  
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##PLOT 
 
plot(G_cdf1, verticals=TRUE, do.points=FALSE, col="black")  
plot(G_cdf2, verticals=TRUE, do.points=FALSE, col="blue", add=TRUE)  
 
# draw line between points of greatest distance  
 
points(c(G_x0, G_x0), c(G_y0, G_y1), pch=16, col="red")  
segments(G_x0, G_y0, G_x0, G_y1, col="red", lty="dotted") 

 

####TEST WITH POISSION DISTRIBUTION 
##plotting KS distribution tests 
 
P_group <- c(rep(prob$Prob, length(prob$Prob)), rep(pois_dist, length(p
ois_dist))) 
 
 
# create ECDF of data 
 
P_cdf1 <- ecdf(prob$Prob)  
P_cdf2 <- ecdf(pois_dist)  
 
# find min and max statistics to draw line between points of greatest d
istance 
P_minMax <- seq(min(prob$Prob, pois_dist), max(prob$Prob, pois_dist), l
ength.out=length(prob$Prob))  
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P_x0 <- P_minMax[which( abs(P_cdf1(P_minMax) - P_cdf2(P_minMax)) == max
(abs(P_cdf1(P_minMax) - P_cdf2(P_minMax))) )]  
P_y0 <- P_cdf1(G_x0)  
P_y1 <- P_cdf2(G_x0)  
 
 
##PLOT 
 
plot(P_cdf1, verticals=TRUE, do.points=FALSE, col="black")  
plot(P_cdf2, verticals=TRUE, do.points=FALSE, col="blue", add=TRUE)  
 
# draw line between points of greatest distance  
  
segments(P_x0, P_y0, P_x0, P_y1, col="red", lty="dotted") 

 

##CREATE PANNELED FIGURE 
# 4 figures arranged in 2 rows and 2 columns 
 
attach(mtcars) 

## The following object is masked from package:ggplot2: 
##  
##     mpg 

par(mfrow=c(2,2)) 
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#UNIFORM 
plot(U_cdf1, verticals=TRUE, do.points=FALSE, col="black",  
     main = "K-S Test of Uniform Distribution", xlab="Suitability Ranki
ng", ylab="D(x)")  
plot(U_cdf2, verticals=TRUE, do.points=FALSE, col="blue", add=TRUE)  
points(c(U_x0, U_x0), c(U_y0, U_y1), pch=16, col="red")  
segments(U_x0, U_y0, U_x0, U_y1, col="red", lty="dotted") 
 
#NORMAL 
plot(N_cdf1, verticals=TRUE, do.points=FALSE, col="black",  
     main = "K-S Test of Normal Distribution", xlab="Suitability Rankin
g", ylab="D(x)")  
plot(N_cdf2, verticals=TRUE, do.points=FALSE, col="blue", add=TRUE)  
points(c(N_x0, N_x0), c(N_y0, N_y1), pch=16, col="red")  
segments(N_x0, N_y0, N_x0, N_y1, col="red", lty="dotted") 
 
#GAMMA 
plot(G_cdf1, verticals=TRUE, do.points=FALSE, col="black",  
     main = "K-S Test of Gamma Distribution", xlab="Suitability Ranking
", ylab="D(x)")  
plot(G_cdf2, verticals=TRUE, do.points=FALSE, col="blue", add=TRUE)  
points(c(G_x0, G_x0), c(G_y0, G_y1), pch=16, col="red")  
segments(G_x0, G_y0, G_x0, G_y1, col="red", lty="dotted") 
 
#POISSON 
plot(P_cdf1, verticals=TRUE, do.points=FALSE, col="black",  
     main = "K-S Test of Poisson Distribution", xlab="Suitability Ranki
ng", ylab="D(x)")  
plot(P_cdf2, verticals=TRUE, do.points=FALSE, col="blue", add=TRUE)  
segments(P_x0, P_y0, P_x0, P_y1, col="red", lty="dotted") 
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##CONFIDENCE ENVELOPES FOR KS, ECDF distribution (uses sfsmisc package) 
 
ecdf.ksCI(prob$Prob, ci.col = "green") 
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ecdf.ksCI(unif_prob) 

 

ecdf.ksCI(norm_dist) 
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ecdf.ksCI(gamma_dist) 

 

ecdf.ksCI(pois_dist) 
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Appendix C:  Supplemental Information from Chapter 5 

This R Markdown shows the development of a point process modeling procedure to 
evaluate archaeological predictive models. This code reflects the methods discussed in 
the text of the manuscript.  

Load Libraries  

library(spatstat)  

## spatstat 1.63-0       (nickname: 'Space 

camouflage')  ## For an introduction to spatstat, 

type 'beginner' library(maptools) library(raster) 

library(rgdal)  

## rgdal: version: 1.4-8, (SVN revision 845)  
  

library(rgeos)  

## rgeos version: 0.5-2, (SVN revision 621)  
##  GEOS runtime version: 3.6.1-CAPI-1.10.1   
##  Linking to sp version: 1.3-2   
  

library(sp) 
library(MuMIn) 
library(MASS) 
library(here)  

##   
## Attaching package: 'MASS'  

## The following objects are masked from 'package:raster':  
##   
##     area, select  

## The following object is masked from 
'package:spatstat': ##   
##     area 
library(graphics)  

Setup workspace for spatial analysis   

setwd(here())  
  
#Bounding window data  
win_ext <- readOGR(dsn="AOI_boundary.shp")   
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Load Archaeological Points and Environmental Datasets  

Arch <- readOGR(dsn = "TOTAL_POINT_artifWGS_2019.shp")  

veg_index <- mask(raster("SAVI_35_dist_p5_9.tif"), win_ext)  

  
dunes <- mask(raster("dune_dist_p5_9.tif"), win_ext)  
  
water <- mask(raster("water_dist_p5_9.tif"), win_ext)  

  
coral <- mask(raster("coral_dist_p5_9.tif"), win_ext)  
  
islands <- mask(raster("island_dist_p5_9.tif"), win_ext)  

  
rocks <- mask(raster("rock_dist_5_91.tif"), win_ext)  

  
bedrock <- mask(raster("bedrk_120dst.tif"), win_ext)  

Convert data to PPM format for spatstat analysis   

b_win <- as.owin(win_ext)  
  
#creates coordinate matrix  
  
arch_pp <- matrix(NA, nrow = nrow(Arch), 
ncol = 2) arch_pp[,1] <- Arch$coords.x1 
#Long arch_pp[,2] <- Arch$coords.x2 #Lat  
  
#converts CM to PPP (spatstat format)  
  
ppparch_points <- ppp(x=arch_pp[,1], y=arch_pp[,2],                       
window = owin(bbox(arch_pp)[1,],                                     
bbox(arch_pp)[2,]))  
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## Warning: data contain duplicated points #there are no duplicated 
points, but some points are too close together for spatstat to 
recognize. We use rjitter to correct this.  

ppparch <- rjitter(ppparch_points, 0.001) #to rectify duplicated point 
issue  
  
  
SAVI_pp <- as.im(veg_index)  
  
pppwater <- as.im(water)  
  
pppdunes <- as.im(dunes)  
  
pppcoral <- as.im(coral)  
  
pppisland <- as.im(islands)  
  
ppprocshor <- as.im(rocks)  
  
ppp_bedrock <- as.im(bedrock)   
Exploratory Analysis   

#First-order Trends using rho-hat estimation with 95% confidence bands  

#Unweighted Rho-hat tests  

  
SAVI_rh_nw <- rhohat(ppparch, SAVI_pp)   
  

dune_rh_nw <- rhohat(ppparch, pppdunes)   
  

water_rh_nw <- rhohat(ppparch, pppwater)   
  

coral_rh_nw <- rhohat(ppparch, pppcoral)   
  

island_rh_nw <- rhohat(ppparch, pppisland)   
  

rock_rh_nw <- rhohat(ppparch, ppprocshor) 

bedrock_rh_nw <- rhohat(ppparch, ppp_bedrock) 

bedrock_rh_nw  

#The following code creates Figure 5-4.  
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par(mfrow=c(3,3)) 
par(mar=c(2,2,1.5,1.5))  
  
plot(bedrock_rh_nw, main= "Bedrock", legend=F, ylim=c(0,0.00002), 
xlab="Distance (m)", ylab="Absolute Intensity")# highest y-limit 
(0.00009) plot(island_rh_nw, main= "Islands", legend=F, 
ylim=c(0,0.00002), xlab="Distance (m)", ylab="Absolute Intensity") 
#very high y-limit (0.1) plot(rock_rh_nw, main= "Rock Outcrops", 
legend=F, ylim=c(0,0.00002), xlab="Distance (m)", ylab="Absolute 
Intensity") #high limit (0.00004) plot(coral_rh_nw, main= "Coral", 
legend=F, ylim=c(0,0.00002), xlab="Distance  

(m)", ylab="Absolute Intensity")  
plot(water_rh_nw, main= "Ocean", legend=F, ylim=c(0,0.00002), 
xlab="Distance  
(m)", ylab="Absolute Intensity")   
plot(dune_rh_nw, main= "Paleodunes", legend=F, ylim=c(0,0.00002), 
xlab="Distance (m)", ylab="Absolute Intensity")  
plot(SAVI_rh_nw, main= "Vegetation", legend=F, ylim=c(0,0.00002), 
xlab="Distance (m)", ylab="Absolute Intensity")  
  
dev.off()  

par(mfrow=c(1,1))  
  
#First-order rho-hat intensity tests using weights (by artifact count)  
  
SAVI_rh <- rhohat(ppparch, SAVI_pp, weights = Arch$Total_Mate)  
dune_rh <- rhohat(ppparch, pppdunes, weights = Arch$Total_Mate)   
  

water_rh <- rhohat(ppparch, pppwater, weights = Arch$Total_Mate)   
  

coral_rh <- rhohat(ppparch, pppcoral, weights = Arch$Total_Mate)   
  

island_rh <- rhohat(ppparch, pppisland, weights = Arch$Total_Mate)   
  

rock_rh <- rhohat(ppparch, ppprocshor, weights = Arch$Total_Mate) 

bedrock_rh <- rhohat(ppparch, ppp_bedrock, weights = Arch$Total_Mate)  

#The following code creates Figure 5-5.  

par(mfrow=c(3,3)) 
par(mar=c(2,2,1.5,1.5))  
  
plot(bedrock_rh, main="Bedrock", legend=F, ylim=c(0,0.0002), 
xlab="Distance  
(m)", ylab="Absolute Intensity")#highest y-limit (0.002)  
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plot(island_rh, main="Islands", legend=F, ylim=c(0,0.0002), 
xlab="Distance  
(m)", ylab="Absolute Intensity") #very low y-limit (0.00002) 
plot(rock_rh, main="Rock Outcrops", legend=F, ylim=c(0,0.0002),  

xlab="Distance (m)", ylab="Absolute Intensity")#third highest y-
limit, everything else visible from this point plot(coral_rh, 
main="Corals", legend=F, ylim=c(0,0.0002), xlab="Distance  

(m)", ylab="Absolute Intensity")  
plot(water_rh, main="Ocean", legend=F, ylim=c(0,0.0002), xlab="Distance 
(m)", ylab="Absolute Intensity")   
plot(dune_rh, main="Paleodunes", legend=F, ylim=c(0,0.0002), 
xlab="Distance  
(m)", ylab="Absolute Intensity")  
plot(SAVI_rh, main="Vegetation", legend=F, ylim=c(0,0.0002), 
xlab="Distance (m)", ylab="Absolute Intensity")  
  
par(mfrow=c(1,1)) 
dev.off()  

Second-Order Tests: Summary Distribution Functions  

#Unweighted  
K_test <- envelope(ppparch, fun=Kest, nsim=39, fix.n=T, 
correction="translation", global=F)   

G_test <- envelope(ppparch, fun=Gest, nsim=39, fix.n=T, 
correction="best", global=F)  

PCFtest <- envelope(ppparch, fun=pcf, nsim=39, 

fix.n=T, correction="translation", global=F, 

divisor="d") par("mar") #check dimensions of 

image plots #The following code creates Figure 5-

6  

par(mfrow=c(1,3))  par(mar=c(2,2,2,2)) plot(K_test, main="K-
function",xlim=c(0,1000), legend=F, xlab="Distance (m)") plot(G_test, 
main="G-function",xlim=c(0,1000),  legend=F, xlab="Distance  

(m)")   
plot(PCFtest, main="PC-function",xlim=c(0,1000), legend=F, 
xlab="Distance  
(m)")   
#Weighted model functions (by artifact count)  
K_test_w <- envelope(ppparch, fun=Kest, nsim=39, fix.n=T, 
wght=Arch$Total_Mate, correction="translation", global=F)   

G_test_w <- envelope(ppparch, fun=Gest, nsim=39, fix.n=T, 
wght=Arch$Total_Mate, correction="best", global=F)  
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PCFtest_w <- envelope(ppparch, fun=pcf, nsim=39, fix.n=T, 
wght=Arch$Total_Mate, correction="translation", global=F, divisor="d")  

#Creates figure below (weighted summary distribution functions) 
par(mfrow=c(2,2))  par(mar=c(2,2,2,2)) plot(K_test_w, main="Weighted K-
function",xlim=c(0,1000), legend=F)  plot(G_test_w, main="Weighted G-
function",xlim=c(0,1000),  legend=F)  plot(PCFtest_w, main="Weighted PC-
function",xlim=c(0,1000), legend=F)   

  
par(mfrow=c(1,1))   

  
  

Point Process Modeling of First-Order Properties  

#PPM_0 - null model using complete spatial randomness (CSR)  
  
ppm0 <- ppm(ppparch, ~1, correction="translation")   
  

#Point Process model of Davis et al. (2020) predictive algorithm  
  
ppm1 <- ppm(ppparch, ~SAVI_pp+pppdunes+pppcoral+pppwater+pppisland, 
correction = "translation")  

#New algorithm including all environmental 
covariates ppm2 <- ppm(ppparch,  
~SAVI_pp+pppdunes+pppcoral+pppwater+pppisland+ppprocshor+ppp_b
edrock, correction = "translation") ppm2  
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## Nonstationary Poisson process  
##   
## Log intensity:  ~SAVI_pp + pppdunes + pppcoral + pppwater + 
pppisland +  ## ppprocshor + ppp_bedrock  
##   
## Fitted trend coefficients:  
##   (Intercept)       SAVI_pp      pppdunes      pppcoral      
pppwater  ## -1.023702e+01 -1.300368e-03  5.448134e-04 -1.149442e-02  
1.092304e-02   
##     pppisland    ppprocshor   
ppp_bedrock  ##  3.847663e-03 -3.899362e-
04 -2.019069e-02  ##   
##                  Estimate         S.E.       CI95.lo       CI95.hi 
Ztest  
## (Intercept) -1.023702e+01 2.560448e-01 -1.073886e+01 -9.7351829007   
***  
## SAVI_pp     -1.300368e-03 8.236907e-04 -2.914772e-03  0.0003140365        
## pppdunes     5.448134e-04 5.105335e-04 -4.558138e-04  0.0015454407        
## pppcoral    -1.149442e-02 1.335140e-03 -1.411124e-02 -0.0088775922   
***  
## pppwater     1.092304e-02 1.360987e-03  8.255550e-03  0.0135905213   
***  
## pppisland    3.847663e-03 9.748846e-04  1.936924e-03  0.0057584013   
***  
## ppprocshor  -3.899362e-04 6.091072e-05 -5.093190e-04 -0.0002705534   
*** ## ppp_bedrock -2.019069e-02 1.094142e-03 -2.233517e-02 -
0.0180462133   *** ##                   Zval  
## (Intercept) -39.981372  
## SAVI_pp      -1.578709  
## pppdunes      1.067145  
## pppcoral     -8.609151  
## pppwater      8.025818  
## pppisland     3.946788  
## ppprocshor   -6.401767  
## ppp_bedrock -18.453449  
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Covariate Model Selection  
#Model Selection between CSR, the original Davis et al. (2020) 
model, and model with new covariates  
MS_AIC <- model.sel(ppm0, ppm1, ppm2, rank = AIC) 
MS_AIC  

## Model selection table   
##                               trend df     logLik     AIC  delta 
weight  
## ppm2 S_pp+pppd+pppc+pppw+ppps+pppr+  8  -8394.182 16804.4    0.0      
1  
## ppm1       S_pp+pppd+pppc+pppw+ppps  6 -10139.231 20290.5 3486.1      
0 ## ppm0                                 1 -11438.133 22878.3 6073.9      
0 ## Abbreviations:  
## trend:  = '~1',   
##        S_pp+pppd+pppc+pppw+ppps =  
'~SAVI_pp+pppdunes+pppcoral+pppwater+pppisland',   
##        S_pp+pppd+pppc+pppw+ppps+pppr+ =  
'~SAVI_pp+pppdunes+pppcoral+pppwater+pppisland+ppprocsh
or+' ## Models ranked by AIC(x)  

 

MS_BIC <- model.sel(ppm0, ppm1, ppm2, rank = BIC) 
MS_BIC  

## Model selection table   
##                               trend df     logLik     BIC   delta 
weight  
## ppm2 S_pp+pppd+pppc+pppw+ppps+pppr+  8  -8394.182 16841.9    0.00      
1  
## ppm1       S_pp+pppd+pppc+pppw+ppps  6 -10139.231 20318.6 3476.72      
0 ## ppm0                                 1 -11438.133 22883.0 6041.08      
0 ## Abbreviations:  
## trend:  = '~1',   
##        S_pp+pppd+pppc+pppw+ppps =  
'~SAVI_pp+pppdunes+pppcoral+pppwater+pppisland',   
##        S_pp+pppd+pppc+pppw+ppps+pppr+ =  
'~SAVI_pp+pppdunes+pppcoral+pppwater+pppisland+ppprocsh
or+' ## Models ranked by BIC(x)  

#Assess best fitting model (PPM2) using stepwise selection 
stepAIC(ppm2)  

## Start:  AIC=16804.36  
## ~SAVI_pp + pppdunes + pppcoral + pppwater + pppisland + 
ppprocshor +  ##     ppp_bedrock  

##               Df   AIC  
## - pppdunes     1 16804  
## <none>           16804  
## - SAVI_pp      1 16805  
## - pppisland    1 16821  



 

256 

 

## - ppprocshor   1 16856  
## - pppwater     1 16882  
## - pppcoral     1 16898  
## - ppp_bedrock  1 19366  

  
## Step:  AIC=16803.49  
## ~SAVI_pp + pppcoral + pppwater + pppisland + ppprocshor + 
ppp_bedrock  

##               Df   AIC  
## <none>           16804  
## - SAVI_pp      1 16805  
## - pppisland    1 16822  
## - ppprocshor   1 16854  
## - pppwater     1 16882  
## - pppcoral     1 16898  
## - ppp_bedrock  1 19504  

## Nonstationary Poisson process  
##   
## Log intensity:  ~SAVI_pp + pppcoral + pppwater + pppisland + 
ppprocshor +  ## ppp_bedrock  
##   
## Fitted trend coefficients:  
##   (Intercept)       SAVI_pp      pppcoral      pppwater     
pppisland   
## -1.023407e+01 -1.410127e-03 -1.149096e-02  1.092652e-02  
3.993073e-03  ##    ppprocshor   ppp_bedrock  ## -3.835392e-04 -
2.009802e-02  ##   
##                  Estimate         S.E.       CI95.lo       CI95.hi 
Ztest  
## (Intercept) -1.023407e+01 2.557837e-01 -1.073540e+01 -9.7327431970   
***  
## SAVI_pp     -1.410127e-03 8.191544e-04 -3.015640e-03  0.0001953863        
## pppcoral    -1.149096e-02 1.326391e-03 -1.409064e-02 -0.0088912848   
***  
## pppwater     1.092652e-02 1.353405e-03  8.273893e-03  0.0135791415   
***  
## pppisland    3.993073e-03 9.637460e-04  2.104166e-03  0.0058819805   
***  
## ppprocshor  -3.835392e-04 6.042613e-05 -5.019722e-04 -0.0002651061   
*** ## ppp_bedrock -2.009802e-02 1.093286e-03 -2.224082e-02 -
0.0179552200   *** ##                   Zval  
## (Intercept) -40.010644  
## SAVI_pp      -1.721442  
## pppcoral     -8.663329  
## pppwater      8.073355  
## pppisland     4.143284  
## ppprocshor   -6.347240  
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## ppp_bedrock -
18.383129 ## Problem:  
  

stepBIC <- stepAIC(ppm2, k=log(length(Arch)))  

## Start:  AIC=16841.87  
## ~SAVI_pp + pppdunes + pppcoral + pppwater + pppisland + 
ppprocshor +  ##     ppp_bedrock  

##               Df   AIC  
## - pppdunes     1 16836  
## - SAVI_pp      1 16838  
## <none>           16842  
## - pppisland    1 16854  
## - ppprocshor   1 16889  
## - pppwater     1 16914  
## - pppcoral     1 16930  
## - ppp_bedrock  1 19399  

##   
## Step:  AIC=16836.31  
## ~SAVI_pp + pppcoral + pppwater + pppisland + ppprocshor + 
ppp_bedrock  

##               Df   AIC  
## - SAVI_pp      1 16833  
## <none>           16836  
## - pppisland    1 16850  
## - ppprocshor   1 16882  
## - pppwater     1 16910  
## - pppcoral     1 16926  
## - ppp_bedrock  1 19532  

##   
## Step:  AIC=16832.75  
## ~pppcoral + pppwater + pppisland + ppprocshor + ppp_bedrock  

##               Df   AIC  
## <none>           16833  
## - pppisland    1 16851  
## - ppprocshor   1 16878  
## - pppwater     1 16910  
## - pppcoral     1 16928  
## - ppp_bedrock  1 20076  

#New Best fitting PPM based on model selection  
ppm3 <- ppm(ppparch, 
~pppcoral+pppwater+pppisland+ppprocshor+ppp_bedrock, correction = 
"translation") #Best fitting based on BIC  

ppm4 <- ppm(ppparch,  
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~SAVI_pp+pppcoral+pppwater+pppisland+ppprocshor+ppp_bedrock, 
correction = "translation") #Best fitting based on AIC  

#Following code produces data in Table 2  

MS_AIC2 <- model.sel(ppm0, ppm1, ppm2, ppm3, ppm4, rank = AIC)  

## Model selection table   
##                               trend  
## ppm4 S_pp+pppc+pppw+ppps+pppr+ppp_b  
## ppm2 S_pp+pppd+pppc+pppw+ppps+pppr+  
## ppm3      pppc+pppw+ppps+pppr+ppp_b  
## ppm1       S_pp+pppd+pppc+pppw+ppps  
## ppm0                                 
##      df     logLik     AIC  
## ppm4  7  -8394.744 16803.5  
## ppm2  8  -8394.182 16804.4  
## ppm3  6  -8396.311 16804.6  
## ppm1  6 -10139.231 20290.5  
## ppm0  1 -11438.133 22878.3  
##        delta weight  
## ppm4    0.00  0.452  
## ppm2    0.88  0.292  
## ppm3    1.13  0.256  
## ppm1 3486.97  0.000  
## ppm0 6074.78  0.000  
## Abbreviations:  
## trend:  = ‘~1’,   
##        pppc+pppw+ppps+pppr+ppp_b =   
## ‘~pppcoral+pppwater+pppisland+ppprocshor+ppp_bedrock’,   
##        S_pp+pppc+pppw+ppps+pppr+ppp_b =   
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## ‘~SAVI_pp+pppcoral+pppwater+pppisland+ppprocshor+ppp_bedrock’,   
##        S_pp+pppd+pppc+pppw+ppps =   
## ‘~SAVI_pp+pppdunes+pppcoral+pppwater+pppisland’,   
##        S_pp+pppd+pppc+pppw+ppps+pppr+ =   
## ‘~SAVI_pp+pppdunes+pppcoral+pppwater+pppisland+ppprocshor+’  
## Models ranked by AIC(x)   

  
MS_BIC2 <- model.sel(ppm0, ppm1, ppm2, ppm3, ppm4, rank = BIC)  

## Model selection table   
##                               trend  
## ppm3      pppc+pppw+ppps+pppr+ppp_b  
## ppm4 S_pp+pppc+pppw+ppps+pppr+ppp_b  
## ppm2 S_pp+pppd+pppc+pppw+ppps+pppr+  
## ppm1       S_pp+pppd+pppc+pppw+ppps  
## ppm0                                 
##      df     logLik     BIC  
## ppm3  6  -8396.311 16832.8  
## ppm4  7  -8394.744 16836.3  
## ppm2  8  -8394.182 16841.9  
## ppm1  6 -10139.231 20318.6  
## ppm0  1 -11438.133 22883.0  
##        delta weight  
## ppm3    0.00  0.848  
## ppm4    3.55  0.143  
## ppm2    9.12  0.009  
## ppm1 3485.84  0.000  
## ppm0 6050.20  0.000  
## Abbreviations:  
## trend:  = ‘~1’,   
##        pppc+pppw+ppps+pppr+ppp_b =   
## ‘~pppcoral+pppwater+pppisland+ppprocshor+ppp_bedrock’,   
##        S_pp+pppc+pppw+ppps+pppr+ppp_b =   
## ‘~SAVI_pp+pppcoral+pppwater+pppisland+ppprocshor+ppp_bedrock’,   
##        S_pp+pppd+pppc+pppw+ppps =   
## ‘~SAVI_pp+pppdunes+pppcoral+pppwater+pppisland’,   
##        S_pp+pppd+pppc+pppw+ppps+pppr+ =   
## 
‘~SAVI_pp+pppdunes+pppcoral+pppwater+pppisland+ppprocsh
or+’ ## Models ranked by BIC(x)   

Assess Residual Values  

#Evaluate Residual Values for Best Fitting Model RES_PPM3 <- 
residuals.ppm(ppm3, drop=T)  

RES_PPM4 <- residuals.ppm(ppm4, drop=T)  
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RES_PPM1 <- (residuals.ppm(ppm1, drop=T))  
  
#Following code produces Figure 5-7.  

par(mfrow=c(3,2))  
par(mar=c(1,3,1,3)) #reset image dimensions to 1x1  
  
plot.msr(RES_PPM3, main="PPM3 Raw Residuals", pch=16, cex=0.25)  

diagnose.ppm(ppm3, main="PPM3 Smoothed Residuals",type = 

"pearson", which="smooth", cumulative = T) plot.msr(RES_PPM4, 

main="PPM4 Raw Residuals", pch=16, cex=0.25)  

diagnose.ppm(ppm4, main="PPM4 Smoothed Residuals",type = 

"pearson", which="smooth", cumulative = T) plot.msr(RES_PPM1, 

main="PPM1 Raw Residuals", pch=16, cex=0.25)  

diagnose.ppm(ppm1, main="PPM1 Smoothed Residuals", type = 

"pearson", which="smooth", cumulative = T) par(mfrow=c(1,1))  

#Assess fit of models with second-order properties using Residual K- 
and Gtests  
  
K_sim1_ppm0 <- envelope(ppm0, Kres, nsim=39, fix.n=T, 
correction="translation", global=F, divisor="d")   

K_sim1_ppm1 <- envelope(ppm1, Kres, nsim=39, fix.n=T, 
correction="translation", global=F, divisor="d")   

K_sim1_ppm3 <- envelope(ppm3, Kres, nsim=39, fix.n=T, 
correction="translation", global=F, divisor="d")  

K_sim1_ppm4 <- envelope(ppm4, Kres, nsim=39, fix.n=T, 
correction="translation", global=F, divisor="d")  

G_sim1_ppm0 <- envelope(ppm0, Gres, nsim=39, fix.n=T, 
correction="best", global=F)   

G_sim1_ppm1 <- envelope(ppm1, Gres, nsim=39, fix.n=T, 
correction="best", global=F)   

G_sim1_ppm3 <- envelope(ppm3, Gres, nsim=39, fix.n=T, 
correction="best", global=F)  

G_sim1_ppm4 <- envelope(ppm4, Gres, nsim=39, fix.n=T, 
correction="best", global=F)  
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#Following Code Produces Figure 5-7  

par(mfrow=c(2,3)) 
par(mar=c(2,2,2,2))  
plot(K_sim1_ppm3, legend=F, main="Residual K-Function\n PPM3", 
xlab="Distance  
(m)")  
plot(K_sim1_ppm4, legend=F, main="Residual K-Function\n PPM4", 
xlab="Distance  
(m)")  
plot(K_sim1_ppm1, legend=F, main="Residual K-Function\n PPM1", 
xlab="Distance  
(m)")  
plot(G_sim1_ppm3, legend=F, main="Residual G-Function\n PPM3", 
xlab="Distance  
(m)")  
plot(G_sim1_ppm4, legend=F, main="Residual G-Function\n PPM4", 
xlab="Distance  
(m)")  
plot(G_sim1_ppm1, legend=F, main="Residual G-Function\n PPM1", 
xlab="Distance (m)")  

#Coefficient Estimates of Best-fitting model (PPM3)  ppm3  

## Nonstationary Poisson process  
##   
## Log intensity:  ~pppcoral + pppwater + pppisland + 
ppprocshor +  ## ppp_bedrock  
##   
## Fitted trend coefficients:  
##   (Intercept)      pppcoral      pppwater     pppisland   
## -10.351284181  -0.011757903   0.011161231   0.004294965   
##    ppprocshor   ppp_bedrock   
##  -0.000384706  -0.020488528   

  
##                  Estimate         S.E.       CI95.lo  
## (Intercept) -10.351284181 2.479784e-01 -1.083731e+01  
## pppcoral     -0.011757903 1.326579e-03 -1.435795e-02  
## pppwater      0.011161231 1.353968e-03  8.507502e-03  
## pppisland     0.004294965 9.516529e-04  2.429760e-03  
## ppprocshor   -0.000384706 6.089174e-05 -5.040516e-04  
## ppp_bedrock  -0.020488528 1.075191e-03 -2.259586e-02  
##                   CI95.hi Ztest       Zval  
## (Intercept) -9.8652554468   *** -41.742685  
## pppcoral    -0.0091578568   ***  -8.863329  
## pppwater     0.0138149591   ***   8.243349  
## pppisland    0.0061601708   ***   4.513164  
## ppprocshor  -0.0002653604   ***  -
6.317868 ## ppp_bedrock -0.0183811931   
*** -19.055715  

GIS Analysis  
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From the results of exploratory rho-hat tests and coefficient estimates from the PPMs, 
we take the above information into consideration to develop a series of probability rasters 
in ArcGIS. The Raster Calculator tool is used.   

## Code Creates Unweighted predictive raster using Raster Calculator 
Tool, following PPM2   

Unweighted_Model =  

(1/"bdrck_dpt_10m")+(1/"coral_dist_p5_9.tif")+(1/"island_dist_p5_9.tif"
)+(1/" rock_dist_5_91.tif")+(1/"water_dist_p5_9.tif")  

## Code Creates Weighted Model 1 using Raster Calculator Tool, 
following PPM results   

Weighted_Model1 =  

((2.5*1/"bdrck_dpt_10m"))+(1.75*(1/"coral_dist_p5_9.tif"))+(1/"dune_dis
t_p5_9 
.tif")+(1.75*(1/"island_dist_p5_9.tif"))+(2*(1/"rock_dist_5_91.tif"))+(
1/"wat er_dist_p5_9.tif")+(2*(1/"SAVI_35_dist_p5_9.tif"))  

## Code Creates Weighted Model 2 using Raster Calculator Tool, 
following PPM results   

Weighted_Model2 =  

((3*1/"bdrck_dpt_10m"))+(2*(1/"coral_dist_p5_9.tif"))+(1/"dune_dist_p5_
9.tif" 
)+(1.75*(1/"island_dist_p5_9.tif"))+(2.5*(1/"rock_dist_5_91.tif"))+(1/"
water_ dist_p5_9.tif")+(2*(1/"SAVI_35_dist_p5_9.tif"))  

## Code Creates Weighted Model 3 using Raster Calculator Tool, 
following PPM results   

Weighted_Model3 =  

((2.5*1/"bdrck_dpt_10m"))+(1.5*(1/"coral_dist_p5_9.tif"))+(1/"dune_dist
_p5_9. 
tif")+(1.5*(1/"island_dist_p5_9.tif"))+(2*(1/"rock_dist_5_91.tif"))+(1/
"water 

_dist_p5_9.tif")+(1.75*(1/"SAVI_35_dist_p5_9.tif"))  

## Code Creates Weighted Model 4 using Raster Calculator Tool, 
following PPM results   

Weighted_Model4 =   

((2.5*1/"bdrck_dpt_10m"))+(1.5*(1/"coral_dist_p5_9.tif"))+(1.75*(1/"dun
e_dist 

_p5_9.tif"))+(1.5*(1/"island_dist_p5_9.tif"))+(2*(1/"rock_dist_5_91.tif
"))+(1 /"water_dist_p5_9.tif")+(1.75*(1/"SAVI_35_dist_p5_9.tif"))  

These rasters are assessed against one another in their ability to positively identify known 
areas with archaeological material. The best performing probability raster is then tested 
using the PPM procedure detailed above to quantitatively assess its performance against 
the unweighted model and the Davis et al. (2020) model (PPM1).  
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Assess best predictive raster against Weighted Raster   

#Weighted Raster  
w_model <- mask(raster("PPA_Datasets/Weight_Mod5_WGS.tif"), win_ext)  

WMod_pp <- as.im(w_model)  

  
ppm5 <- ppm(ppparch, ~WMod_pp, correction = "translation")  

#Unweighted raster (same as PPM3)  
uw_model <- mask(raster("PPA_Datasets/unweight_BIC_WGS1.tif"), win_ext) 
uwMod_pp <- as.im(uw_model) ppm6 <- ppm(ppparch, ~uwMod_pp, correction = 
"translation")  

Point Process Modeling of Second-Order Properties  

##Evaluate Clustering/Dispersion as Model for Settlement Distribution  
  
#Unweighted Model with Area Interaction area_int2 <- 
data.frame(r=seq(10, 300, by=10))  p1 <- 
profilepl(area_int2, AreaInter, ppparch~uwMod_pp, 
aic=T)   

p1  

## profile log pseudolikelihood  
## for model:  ppm(ppparch ~ uwMod_pp,  aic = T,  interaction = 
AreaInter) ## fitted with rbord = 600  
## interaction: Area-interaction process  
## irregular parameter: r in [10, 300]  
## optimum value of irregular parameter:  r = 130 
plot(p2)  
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ppm 7   < -   as.ppm p ( 1 )   
  
#Weighted Model with Area Interaction   
area_int3 < -   data.frame ( r= seq ( 10 ,  300 ,  by= 10   ))   
p 2   < -   profilepl ( area_int3, AreaInter, ppparch ~ WMod_pp,  aic= T)    

p 2   

## profile log pseudolikelihood   
## for model: ppm(ppparch~ WMod_pp,aic = T,interaction = AreaInter)   
## fitted with rbord = 600   
## interaction: Area - interaction process   
## irregular parameter: r in [10, 300]   
## optimum value of irregular parameter:  r = 120 (   

plot ( p 2)   
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ppm 8   < -   as.ppm p ( 2 )     

#CSR with Area  Interaction     

area_int3 < -   data.frame ( r= seq ( 10 ,  300 ,  by= 10   ))   
p3 < -   profilepl ( area_int3, AreaInter, ppparch ~ 1 ,  aic= T)    

p3   

## profile log pseudolikelihood   
## for model: ppm(ppparch ~ WMod_pp, aic = T, interaction = AreaInter)   
## fitted with rbord = 600   
##   interaction: Area - interaction process   
## irregular parameter: r in [10, 300]   
## optimum value of irregular parameter:  r = 160   

Ppm9 < -   as.ppm ( p 3)     

plot ( p 3)   
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##Evaluate Fit of Area Interaction Process Models   

K_sim1_ppm 7   < -   envelope ppm ( 7 , Kres,  nsim= 39 ,  fix.n= T,  
correction= "translation" ,  global= T)    

K_sim1_ppm 8   < -   envelope ppm ( 8 , Kres,  nsim= 39 ,  fix.n= T,  
correction= "translation" ,  global= T)    

#Following code produces figure 9   

par(mfrow=c(2, 1 ))   

plot ( K_sim1_ppm 7 ,  legend= F,  main= "K - Function \ n   Unweighted + Area  
Interaction" ,  xlab= "Distance (m)" )   

plot ( K_sim1_ppm 8 ,  legend= F,  main= "K - Function \ n   Weighted+Area Interaction" 
xlab= "Distance (m)" )   

par(mfrow=c(1,1))   

#Model Selection of second - order PPMs   

#Following code produces data in Table 6   

MS_AIC2   < -   model.sel ( ppm0, ppm5, ppm6, ppm7, ppm8, ppm9,  rank =   AIC)   
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MS_AIC2  

> MS_AIC2  

## Model selection table   
##             Q trend correction        interaction rbord df  
## ppm8 ppp~W_pp                  l(Ar-int,AI,l(inf,   600  3  
## ppm7 ppp~u_pp                  l(Ar-int,AI,l(inf,   600  3  
## ppm5      ppp WM_pp translatin                           2  
## ppm6      ppp uM_pp translatin                           2  
## ppm9    ppp~1                  l(Ar-int,AI,l(inf,   600  2  
## ppm0      ppp       translatin                           1  
##          logLik     AIC    delta weight  
## ppm8  -4849.373  9703.7     0.00      1  
## ppm7  -5103.432 10211.7   507.96      0  
## ppm5  -6038.332 12080.7  2376.92      0  
## ppm6  -6465.358 12934.7  3230.97      0  
## ppm9  -8666.598 17336.0  7632.29      0  
## ppm0 -11438.133 22878.3 13174.52      0  
## Abbreviations:  
## Q: ppp = ‘ppparch’, ppp~1 = ‘ppparch~1’,   
##    ppp~u_pp = ‘ppparch~uwMod_pp’,   
##    ppp~W_pp = ‘ppparch~WMod_pp’  
## trend:  = ‘~1’, uM_pp = ‘~uwMod_pp’, WM_pp = ‘~WMod_pp’  
## correction: translatin = ‘translation’  
## interaction: l(Ar-int,AI,l(inf, = ‘list(Area-   
## interactionprocess,AreaInter,list(inforder,’  
## Models ranked by 
AIC(x)    

MS_BIC2 <- model.sel(ppm0, ppm5, ppm6, ppm7, ppm8, ppm9, rank = BIC) 

MS_BIC2   

## Model selection table   
##             Q trend correction        interaction rbord df  
## ppm8 ppp~W_pp                  l(Ar-int,AI,l(inf,   600  3  
## ppm7 ppp~u_pp                  l(Ar-int,AI,l(inf,   600  3  
## ppm5      ppp WM_pp translatin                           2  
## ppm6      ppp uM_pp translatin                           2  
## ppm9    ppp~1                  l(Ar-int,AI,l(inf,   600  2  
## ppm0      ppp       translatin                           1  
##          logLik     BIC    delta weight  
## ppm8  -4849.373  9718.8     0.00      1  
## ppm7  -5103.432 10226.9   508.12      0  
## ppm5  -6038.332 12090.0  2371.23      0  
## ppm6  -6465.358 12944.1  3225.28      0  
## ppm9  -8666.598 17346.6  7627.76      0  
## ppm0 -11438.133 22883.0 13164.14      0  
## Abbreviations:  
## Q: ppp = ‘ppparch’, ppp~1 = ‘ppparch~1’,   
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##    ppp~u_pp = ‘ppparch~uwMod_pp’,   
 ##   ppp~W_pp = ‘ppparch~WMod_pp’  
## trend:  = ‘~1’, uM_pp = ‘~uwMod_pp’, WM_pp = ‘~WMod_pp’  
## correction: translatin = ‘translation’  
## interaction: l(Ar-int,AI,l(inf, = ‘list(Area-  
## interactionprocess,AreaInter,list(inforder,’  
## Models ranked by 
BIC(x)    

 

  



 

269 

 

Appendix D:  Supplemental Information from Chapter 6 

Supplementary Figures 

 

 
Supplemental Figure D-1: Shows results of pansharpening procedure on SWIR 
imagery. A: Unsharpened Sentinel-2 SWIR Band 1. B: Pansharpened Sentinel-2 SWIR 
Band 1. C: Unsharpened Sentinel-2 SWIR Band 2. D: Pansharpened Sentinel-2 SWIR 
Band 2. 
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Supplemental Figure D-2: Shows the locations of ground-verified archaeological sites 
(blue), non-archaeological sites (red), and randomly generated test points (black) used 
in the analysis. 

 

 

 
Supplemental Figure D-3: Shows violin and boxplots for annual and seasonal 
vegetative index values. Note that archaeological sites have a much smaller range of 
values, whereas non-archaeological and random points have a wider range of vegetative 
values. 
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Supplemental Figure D-4: Shows the SWIR reflectance signatures for archaeological, 
non-archaeological, and randomly generated points within the study area. 

 
 

 
Supplemental Figure D-5. Shows NDWI vegetative index values for archaeological, 
non-archaeological, and randomly generated points within the study area. 
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Supplemental Figure D-6. Results of Getis-Ords General G test. Anthropogenic 
modifications identified by the machine learning algorithm are highly clustered and non-
random in their distribution. 

 
 

Supplementary Tables  
 

Supplemental Table D-1. List of PlanetScope images used for the analyses in this 
paper. 

 

Year Planet Item ID Season 

2018 20180220_064133_103e Dry 

2018 20180220_064134_103e Dry 

2018 20180220_064136_103e Dry 

2018 20180718_064538_103d Wet 

2018 20180718_064539_103d Wet 

2018 20180718_064540_103d Wet 

2019 20190201_065143_1014 Dry 

2019 20190201_065145_1014 Dry 

2019 20190201_065146_1014 Dry 

2019 20190201_065147_1014 Dry 

2019 20190709_065822_1043 Wet 

2019 20190709_065822_1_1043 Wet 

2019 20190709_065823_1043 Wet 
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2019 20190709_065824_1043 Wet 

2020 20200130_070044_0f3f Dry 

2020 20200130_070045_0f3f Dry 

2020 20200130_070046_0f3f Dry 

2020 20200130_070047_0f3f Dry 

2020 20200724_055747_0f3c Wet 

2020 20200724_055748_0f3c Wet 

2020 20200724_055749_0f3c Wet 

 

Code used for Analyses 

R-Code. The following code replicates the analysis of image pixel value statistics of 
archaeological and non-archaeological training points. Band statistics for the Planet 
imagery were generated in ArcGIS (see Methods of main manuscript) before being 
imported into R v. 4.0.2 (R Core Team 2020). Analysis makes use of the raster (Hijmans 
2019), rgdal (Bivand, Keitt, and Rowlingson 2019), ggplot2 (Wickham 2016), gridExtra 
(Auguie 2017), and RStoolbox (Leutner, Horning, and Schwalb-Willmann 2019) 
packages. 
 

##Load Libraries 

library(raster) 

## Loading required package: sp 

library(rgdal) 

## rgdal: version: 1.5-16, (SVN revision 1050) 
## Geospatial Data Abstraction Library extensions to R successfully loa
ded 
## Loaded GDAL runtime: GDAL 3.0.4, released 2020/01/28 
## Path to GDAL shared files: C:/Program Files/R/R-4.0.2/library/rgdal/
gdal 
## GDAL binary built with GEOS: TRUE  
## Loaded PROJ runtime: Rel. 6.3.1, February 10th, 2020, [PJ_VERSION: 6
31] 
## Path to PROJ shared files: C:/Program Files/R/R-4.0.2/library/rgdal/
proj 
## Linking to sp version:1.4-2 
## To mute warnings of possible GDAL/OSR exportToProj4() degradation, 
## use options("rgdal_show_exportToProj4_warnings"="none") before loadi
ng rgdal. 

library(ggplot2) 
library(gridExtra) 
library(RStoolbox) 
 
getwd() 

## [1] "C:/Users/dsd40/Documents/Planet_Imagery/files" 
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#Set working directory 
setwd("C://Users/dsd40/Documents/Planet_Imagery") 
 
#Load AOI Boundary File 
 
AOI <- readOGR("AOI.shp") 

## OGR data source with driver: ESRI Shapefile  
## Source: "C:\Users\dsd40\Documents\Planet_Imagery\AOI.shp", layer: "A
OI" 
## with 1 features 
## It has 1 fields 

setwd("C://Users/dsd40/Documents/Planet_Imagery/files") 

Load Planet Imagery and compile seasonal rasters 

##Load image data by band 
 
j1B1 <- raster("20180718_064538_103d_3B_AnalyticMS_clip.tif", band = 1) 
j1B2 <- raster("20180718_064538_103d_3B_AnalyticMS_clip.tif", band = 2) 
j1B3 <- raster("20180718_064538_103d_3B_AnalyticMS_clip.tif", band = 3) 
j1B4 <- raster("20180718_064538_103d_3B_AnalyticMS_clip.tif", band = 4) 
 
#stack all bands together 
Jul18_1 <- raster::stack(j1B1, j1B2, j1B3, j1B4) 
 
j2B1 <- raster("20180718_064539_103d_3B_AnalyticMS_clip.tif", band = 1) 
j2B2 <- raster("20180718_064539_103d_3B_AnalyticMS_clip.tif", band = 2) 
j2B3 <- raster("20180718_064539_103d_3B_AnalyticMS_clip.tif", band = 3) 
j2B4 <- raster("20180718_064539_103d_3B_AnalyticMS_clip.tif", band = 4) 
 
Jul18_2 <- raster::stack(j2B1, j2B2, j2B3, j2B4) 
 
j3B1 <- raster("20180718_064540_103d_3B_AnalyticMS_clip.tif", band = 1) 
j3B2 <- raster("20180718_064540_103d_3B_AnalyticMS_clip.tif", band = 2) 
j3B3 <- raster("20180718_064540_103d_3B_AnalyticMS_clip.tif", band = 3) 
j3B4 <- raster("20180718_064540_103d_3B_AnalyticMS_clip.tif", band = 4) 
 
Jul18_3 <- raster::stack(j3B1, j3B2, j3B3, j3B4) 
 
#merge all individual images from same date into single raster 
July_2018_mrg <- raster::merge(Jul18_1, Jul18_2, Jul18_3) 
July_2018_clp <- crop(July_2018_mrg, AOI) 
 

#Repeat same process above for all images 
 
j1B1_19 <- raster("20190709_065822_1_1043_3B_AnalyticMS_clip.tif", band 
= 1) 
j1B2_19 <- raster("20190709_065822_1_1043_3B_AnalyticMS_clip.tif", band 
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= 2) 
j1B3_19 <- raster("20190709_065822_1_1043_3B_AnalyticMS_clip.tif", band 
= 3) 
j1B4_19 <- raster("20190709_065822_1_1043_3B_AnalyticMS_clip.tif", band 
= 4) 
 
Jul19_1 <- raster::stack(j1B1_19, j1B2_19, j1B3_19, j1B4_19) 
 
j2B1_19 <- raster("20190709_065822_1043_3B_AnalyticMS_clip.tif", band = 
1) 
j2B2_19 <- raster("20190709_065822_1043_3B_AnalyticMS_clip.tif", band = 
2) 
j2B3_19 <- raster("20190709_065822_1043_3B_AnalyticMS_clip.tif", band = 
3) 
j2B4_19 <- raster("20190709_065822_1043_3B_AnalyticMS_clip.tif", band = 
4) 
 
Jul19_2 <- raster::stack(j2B1_19, j2B2_19, j2B3_19, j2B4_19) 
 
j3B1_19 <- raster("20190709_065823_1043_3B_AnalyticMS_clip.tif", band = 
1) 
j3B2_19 <- raster("20190709_065823_1043_3B_AnalyticMS_clip.tif", band = 
2) 
j3B3_19 <- raster("20190709_065823_1043_3B_AnalyticMS_clip.tif", band = 
3) 
j3B4_19 <- raster("20190709_065823_1043_3B_AnalyticMS_clip.tif", band = 
4) 
 
Jul19_3 <- raster::stack(j3B1_19, j3B2_19, j3B3_19, j3B4_19) 
 
j4B1_19 <- raster("20190709_065824_1043_3B_AnalyticMS_clip.tif", band = 
1) 
j4B2_19 <- raster("20190709_065824_1043_3B_AnalyticMS_clip.tif", band = 
2) 
j4B3_19 <- raster("20190709_065824_1043_3B_AnalyticMS_clip.tif", band = 
3) 
j4B4_19 <- raster("20190709_065824_1043_3B_AnalyticMS_clip.tif", band = 
4) 
 
Jul19_4 <- raster::stack(j4B1_19, j4B2_19, j4B3_19, j4B4_19) 
 
#merge all individual images from same date into single raster 
July_2019_mrg <- raster::merge(Jul19_1, Jul19_2, Jul19_3, Jul19_4) 
July_2019_clp <- crop(July_2019_mrg, AOI) 
 
jB1_20 <- raster("20200724_055747_0f3c_3B_AnalyticMS_clip.tif", band = 
1) 
jB2_20 <- raster("20200724_055747_0f3c_3B_AnalyticMS_clip.tif", band = 
2) 
jB3_20 <- raster("20200724_055747_0f3c_3B_AnalyticMS_clip.tif", band = 
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3) 
jB4_20 <- raster("20200724_055747_0f3c_3B_AnalyticMS_clip.tif", band = 
4) 
 
July20_1 <- raster::stack(jB1_20, jB2_20, jB3_20, jB4_20) 
 
j2B1_20 <- raster("20200724_055748_0f3c_3B_AnalyticMS_clip.tif", band = 
1) 
j2B2_20 <- raster("20200724_055748_0f3c_3B_AnalyticMS_clip.tif", band = 
2) 
j2B3_20 <- raster("20200724_055748_0f3c_3B_AnalyticMS_clip.tif", band = 
3) 
j2B4_20 <- raster("20200724_055748_0f3c_3B_AnalyticMS_clip.tif", band = 
4) 
 
July20_2 <- raster::stack(j2B1_20, j2B2_20, j2B3_20, j2B4_20) 
 
j3B1_20 <- raster("20200724_055749_0f3c_3B_AnalyticMS_clip.tif", band = 
1) 
j3B2_20 <- raster("20200724_055749_0f3c_3B_AnalyticMS_clip.tif", band = 
2) 
j3B3_20 <- raster("20200724_055749_0f3c_3B_AnalyticMS_clip.tif", band = 
3) 
j3B4_20 <- raster("20200724_055749_0f3c_3B_AnalyticMS_clip.tif", band = 
4) 
 
July20_3 <- raster::stack(j3B1_20, j3B2_20, j3B3_20, j3B4_20) 
 
July_2020_mrg <- raster::merge(July20_1, July20_2, July20_3) 
July_2020_clp <- crop(July_2020_mrg, AOI) #crop merged image to the AOI 
 
#July_2020_mrg <- setExtent(July_2020_mrg, July_2019_mrg, snap=TRUE) 
 
 
###WET SEASON IMAGERY 
 
 
f1B1_18 <- raster("20180220_064133_103e_3B_AnalyticMS_clip.tif", band = 
1) 
f1B2_18 <- raster("20180220_064133_103e_3B_AnalyticMS_clip.tif", band = 
2) 
f1B3_18 <- raster("20180220_064133_103e_3B_AnalyticMS_clip.tif", band = 
3) 
f1B4_18 <- raster("20180220_064133_103e_3B_AnalyticMS_clip.tif", band = 
4) 
 
Feb18_1 <- raster::stack(f1B1_18, f1B2_18, f1B3_18, f1B4_18) 
 
f2B1_18 <- raster("20180220_064134_103e_3B_AnalyticMS_clip.tif", band = 
1) 
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f2B2_18 <- raster("20180220_064134_103e_3B_AnalyticMS_clip.tif", band = 
2) 
f2B3_18 <- raster("20180220_064134_103e_3B_AnalyticMS_clip.tif", band = 
3) 
f2B4_18 <- raster("20180220_064134_103e_3B_AnalyticMS_clip.tif", band = 
4) 
 
Feb18_2 <- raster::stack(f2B1_18, f2B2_18, f2B3_18, f2B4_18) 
 
f3B1_18 <- raster("20180220_064136_103e_3B_AnalyticMS_clip.tif", band = 
1) 
f3B2_18 <- raster("20180220_064136_103e_3B_AnalyticMS_clip.tif", band = 
2) 
f3B3_18 <- raster("20180220_064136_103e_3B_AnalyticMS_clip.tif", band = 
3) 
f3B4_18 <- raster("20180220_064136_103e_3B_AnalyticMS_clip.tif", band = 
4) 
 
Feb18_3 <- raster::stack(f3B1_18, f3B2_18, f3B3_18, f3B4_18) 
 
Feb_2018_mrg <- raster::merge(Feb18_1, Feb18_2, Feb18_3) 
Feb_2018_clp <- crop(Feb_2018_mrg, AOI) 
 
f1B1_19 <- raster("20190201_065143_1014_3B_AnalyticMS_clip.tif", band = 
1) 
f1B2_19 <- raster("20190201_065143_1014_3B_AnalyticMS_clip.tif", band = 
2) 
f1B3_19 <- raster("20190201_065143_1014_3B_AnalyticMS_clip.tif", band = 
3) 
f1B4_19 <- raster("20190201_065143_1014_3B_AnalyticMS_clip.tif", band = 
4) 
 
Feb19_1 <- raster::stack(f1B1_19, f1B2_19, f1B3_19, f1B4_19) 
 
f2B1_19 <- raster("20190201_065145_1014_3B_AnalyticMS_clip.tif", band = 
1) 
f2B2_19 <- raster("20190201_065145_1014_3B_AnalyticMS_clip.tif", band = 
2) 
f2B3_19 <- raster("20190201_065145_1014_3B_AnalyticMS_clip.tif", band = 
3) 
f2B4_19 <- raster("20190201_065145_1014_3B_AnalyticMS_clip.tif", band = 
4) 
 
Feb19_2 <- raster::stack(f2B1_19, f2B2_19, f2B3_19, f2B4_19) 
 
f3B1_19 <- raster("20190201_065146_1014_3B_AnalyticMS_clip.tif", band = 
1) 
f3B2_19 <- raster("20190201_065146_1014_3B_AnalyticMS_clip.tif", band = 
2) 
f3B3_19 <- raster("20190201_065146_1014_3B_AnalyticMS_clip.tif", band = 
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3) 
f3B4_19 <- raster("20190201_065146_1014_3B_AnalyticMS_clip.tif", band = 
4) 
 
Feb19_3 <- raster::stack(f3B1_19, f3B2_19, f3B3_19, f3B4_19) 
 
f4B1_19 <- raster("20190201_065147_1014_3B_AnalyticMS_clip.tif", band = 
1) 
f4B2_19 <- raster("20190201_065147_1014_3B_AnalyticMS_clip.tif", band = 
2) 
f4B3_19 <- raster("20190201_065147_1014_3B_AnalyticMS_clip.tif", band = 
3) 
f4B4_19 <- raster("20190201_065147_1014_3B_AnalyticMS_clip.tif", band = 
4) 
 
Feb19_4 <- raster::stack(f4B1_19, f4B2_19, f4B3_19, f4B4_19) 
 
Feb_2019_mrg <- raster::merge(Feb19_1, Feb19_2, Feb19_3, Feb19_4) 
Feb_2019_clp <- crop(Feb_2019_mrg, AOI) 
 
jB1_20 <- raster("20200130_070044_0f3f_3B_AnalyticMS_clip.tif", band = 
1) 
jB2_20 <- raster("20200130_070044_0f3f_3B_AnalyticMS_clip.tif", band = 
2) 
jB3_20 <- raster("20200130_070044_0f3f_3B_AnalyticMS_clip.tif", band = 
3) 
jB4_20 <- raster("20200130_070044_0f3f_3B_AnalyticMS_clip.tif", band = 
4) 
 
Jan20_1 <- raster::stack(jB1_20, jB2_20, jB3_20, jB4_20) 
 
j2B1_20 <- raster("20200130_070045_0f3f_3B_AnalyticMS_clip.tif", band = 
1) 
j2B2_20 <- raster("20200130_070045_0f3f_3B_AnalyticMS_clip.tif", band = 
2) 
j2B3_20 <- raster("20200130_070045_0f3f_3B_AnalyticMS_clip.tif", band = 
3) 
j2B4_20 <- raster("20200130_070045_0f3f_3B_AnalyticMS_clip.tif", band = 
4) 
 
Jan20_2 <- raster::stack(j2B1_20, j2B2_20, j2B3_20, j2B4_20) 
 
j3B1_20 <- raster("20200130_070046_0f3f_3B_AnalyticMS_clip.tif", band = 
1) 
j3B2_20 <- raster("20200130_070046_0f3f_3B_AnalyticMS_clip.tif", band = 
2) 
j3B3_20 <- raster("20200130_070046_0f3f_3B_AnalyticMS_clip.tif", band = 
3) 
j3B4_20 <- raster("20200130_070046_0f3f_3B_AnalyticMS_clip.tif", band = 
4) 
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Jan20_3 <- raster::stack(j3B1_20, j3B2_20, j3B3_20, j3B4_20) 
 
j4B4_20 <- raster("20200130_070047_0f3f_3B_AnalyticMS_clip.tif", band = 
1) 
j4B4_20 <- raster("20200130_070047_0f3f_3B_AnalyticMS_clip.tif", band = 
2) 
j4B4_20 <- raster("20200130_070047_0f3f_3B_AnalyticMS_clip.tif", band = 
3) 
j4B4_20 <- raster("20200130_070047_0f3f_3B_AnalyticMS_clip.tif", band = 
4) 
 
Jan20_4 <- raster::stack(j3B1_20, j3B2_20, j3B3_20, j3B4_20) 
 
Jan_2020_mrg <- raster::merge(Jan20_1, Jan20_2, Jan20_3, Jan20_4) 
Jan_2020_clp <- crop(Jan_2020_mrg, AOI) 

##COMPUTE SEASONALLY AND ANNUALLY AVERAGED RASTERS 
#This will take some time to run depending on your processing power and 
AOI size 
 
WS_val <- overlay(Feb_2018_clp, Feb_2019_clp, Jan_2020_clp,  
                  fun=function(x){  
                    mean(x[x!=0],na.rm=T) 
                    } 
                  ) 
 
DS_val <- overlay(July_2018_clp, July_2019_clp, July_2020_clp,  
                  fun=function(x){  
                    mean(x[x!=0],na.rm=T) 
                    } 
                  ) 
 
#Calculate the mean values for each band for all mosaiced images 
Ann_val <- overlay(Feb_2018_clp, Feb_2019_clp, July_2018_clp,  
                   July_2019_clp, Jan_2020_clp, July_2020_clp,  
                   fun=function(x){  
                     mean(x[x!=0],na.rm=T) 
                     } 
                   ) 
 
#Calculate Seasonal Difference Raster (For Machine Learning Process) 
 
Diff <- (WS_val - DS_val) 
 

#Calculate NDVI 
NDVI_WS <- (WS_val[[4]] - WS_val[[3]])/(WS_val[[4]] + WS_val[[3]]) 
NDVI_DS <- (DS_val[[4]] - DS_val[[3]])/(DS_val[[4]] + DS_val[[3]]) 
NDVI_AN <- (Ann_val[[4]] - Ann_val[[3]])/(Ann_val[[4]] + Ann_val[[3]]) 
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#Calculate SAVI 
SAVI_WS <- ((WS_val[[4]] - WS_val[[3]])/(WS_val[[4]] + WS_val[[3]]+0.5)
*(1.5)) 
SAVI_DS <- ((DS_val[[4]] - DS_val[[3]])/(DS_val[[4]] + DS_val[[3]]+0.5)
*(1.5)) 
SAVI_AN <- ((Ann_val[[4]] - Ann_val[[3]])/(Ann_val[[4]] + Ann_val[[3]]+
0.5)*(1.5)) 

Calculate Band Statistics for Data 
###CALCULATE BAND STATISTICS BETWEEN ARCHAEOLOGICAL AND NON-ARCHAEOLOGI
CAL SITES 
 
setwd("C://Users/dsd40/Documents/Planet_Imagery/Shapefiles") 
 
arch_points <- readOGR(dsn = "Arch_total_pts.shp") 

non_arch_points <- readOGR(dsn = "non_arch_pts.shp") 

arch_points <- crop(arch_points, AOI) 
non_arch_points <- crop(non_arch_points, AOI) 
 
#Generate Random Points to Compare with known ground-tested point locat
ions 
set.seed(1) 
rsam <- spsample(AOI,1000,"random") 

#plot random points along with ground-tested points within AOI 

#Creates Supplemental Figure 6-1 
plot(AOI) 
plot(rsam, add=T) 
plot(arch_points,col='blue', add=T) 
plot(non_arch_points, col='red', add=T) 

#Extract raster values at each archaeological point location 
#Depending on the size of the study region and processing power 
#of your computer, this can take a while to run 
 
Comp_Img <- raster::stack(NDVI_WS, SAVI_WS, NDVI_DS, SAVI_DS, NDVI_AN, 
SAVI_AN) 
 
Arch_values=extract(Comp_Img, arch_points, buffer=20, fun=mean) 
Non_Arch_values=extract(Comp_Img, non_arch_points, buffer=20, fun=mean) 
random_values=extract(Comp_Img, rsam, buffer=20, fun=mean) 
 
 
View(Arch_values) #views the resulting information in a table 
 
 
#make data frames from each raster point table 
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arc_df <- data.frame(Arch_values) 
NAr_df <- data.frame(Non_Arch_values) 
NAr_df <- na.omit(NAr_df) 
Rdm_df <- data.frame(random_values) 
 
#add new column named "cat" (for category) 
arc_df$cat <- "Archaeological Site" #archaeological points 
NAr_df$cat <- "Non-Archaeological" #non-archaeological points 
Rdm_df$cat <- "Random Points" 
#combine both dataframes into a single dataframe 
df <- rbind(arc_df, NAr_df, Rdm_df) 

WS_NDVI_plot <- ggplot(df, aes(df))+ 
  geom_violin(aes(cat, layer.1))+ 
  xlab("")+ 
  ylab("Wet Season NDVI")+ 
  geom_boxplot(aes(cat, layer.1),width=0.03) 
WS_SAVI_plot <- ggplot(df, aes(df))+ 
  geom_violin(aes(cat, layer.2))+ 
  xlab("")+ 
  ylab("Wet Season SAVI")+ 
  geom_boxplot(aes(cat, layer.2),width=0.03) 
DS_NDVI_plot <- ggplot(df, aes(df))+ 
  geom_violin(aes(cat, layer.3))+ 
  xlab("")+ 
  ylab("Dry Season NDVI")+ 
  geom_boxplot(aes(cat, layer.3),width=0.03) 
DS_SAVI_plot <- ggplot(df, aes(df))+ 
  geom_violin(aes(cat, layer.4))+ 
  xlab("")+ 
  ylab("Dry Season SAVI")+ 
  geom_boxplot(aes(cat, layer.4),width=0.03) 
AN_NDVI_plot <- ggplot(df, aes(df))+ 
  geom_violin(aes(cat, layer.5))+ 
  xlab("")+ 
  ylab("Annual NDVI")+ 
  geom_boxplot(aes(cat, layer.5),width=0.03) 
AN_SAVI_plot <- ggplot(df, aes(df))+ 
  geom_violin(aes(cat, layer.6))+ 
  xlab("")+ 
  ylab("Annual SAVI")+ 
  geom_boxplot(aes(cat, layer.6),width=0.03) 
 
#plot using the gridExtra package 

#Creates Supplemental Figure 6-2 
grid.arrange(WS_NDVI_plot, WS_SAVI_plot, DS_NDVI_plot, DS_SAVI_plot, 
             AN_NDVI_plot, AN_SAVI_plot, ncol=2, nrow=3) 
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#Quantitative values for NDVI 
mean(arc_df$layer.1) #wet season 

## [1] -0.005315107 

mean(NAr_df$layer.1) #wet season 

## [1] -0.008050252 

mean(arc_df$layer.3) #dry season 

## [1] -0.05079376 

mean(NAr_df$layer.3) #dry season 

## [1] -0.08240189 

mean(arc_df$layer.5) #annual 

## [1] -0.02056559 

mean(NAr_df$layer.5) #annual 

## [1] -0.03019765 

#Quantitative values for SAVI 
mean(arc_df$layer.2) 

## [1] -0.007972707 

mean(NAr_df$layer.2) 

## [1] -0.01207179 

mean(arc_df$layer.4) 

## [1] -0.07618616 

mean(NAr_df$layer.4) 

## [1] -0.1235879 

mean(arc_df$layer.6) 

## [1] -0.03084745 

mean(NAr_df$layer.6) 

## [1] -0.04529075 

Test for differences between archaeological and non-archaeological points 

#Test for normality of data 
shapiro.test(arc_df$layer.1) 
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##  
##  Shapiro-Wilk normality test 
##  
## data:  arc_df$layer.1 
## W = 0.98468, p-value = 0.001174 

shapiro.test(NAr_df$layer.1) 

##  
##  Shapiro-Wilk normality test 
##  
## data:  NAr_df$layer.1 
## W = 0.85266, p-value = 3.129e-06 

shapiro.test(NAr_df$layer.2) 

##  
##  Shapiro-Wilk normality test 
##  
## data:  NAr_df$layer.2 
## W = 0.85267, p-value = 3.132e-06 

shapiro.test(arc_df$layer.2) 

##  
##  Shapiro-Wilk normality test 
##  
## data:  arc_df$layer.2 
## W = 0.98468, p-value = 0.001174 

shapiro.test(NAr_df$layer.3) 

##  
##  Shapiro-Wilk normality test 
##  
## data:  NAr_df$layer.3 
## W = 0.74488, p-value = 5.924e-09 

shapiro.test(arc_df$layer.3) 

##  
##  Shapiro-Wilk normality test 
##  
## data:  arc_df$layer.3 
## W = 0.95557, p-value = 1.379e-08 

shapiro.test(NAr_df$layer.4) 

##  
##  Shapiro-Wilk normality test 
##  
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## data:  NAr_df$layer.4 
## W = 0.74493, p-value = 5.937e-09 

shapiro.test(arc_df$layer.4) 

##  
##  Shapiro-Wilk normality test 
##  
## data:  arc_df$layer.4 
## W = 0.95558, p-value = 1.381e-08 

shapiro.test(NAr_df$layer.5) 

##  
##  Shapiro-Wilk normality test 
##  
## data:  NAr_df$layer.5 
## W = 0.83913, p-value = 1.257e-06 

shapiro.test(arc_df$layer.5) 

##  
##  Shapiro-Wilk normality test 
##  
## data:  arc_df$layer.5 
## W = 0.98184, p-value = 0.0002861 

shapiro.test(NAr_df$layer.6) 

##  
##  Shapiro-Wilk normality test 
##  
## data:  NAr_df$layer.6 
## W = 0.83915, p-value = 1.259e-06 

shapiro.test(arc_df$layer.6) 

##  
##  Shapiro-Wilk normality test 
##  
## data:  arc_df$layer.6 
## W = 0.98184, p-value = 0.0002862 

#test for normality in random test data 
shapiro.test(Rdm_df$layer.1) 

##  
##  Shapiro-Wilk normality test 
##  
## data:  Rdm_df$layer.1 
## W = 0.89365, p-value < 2.2e-16 

shapiro.test(Rdm_df$layer.2) 
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##  
##  Shapiro-Wilk normality test 
##  
## data:  Rdm_df$layer.2 
## W = 0.89366, p-value < 2.2e-16 

shapiro.test(Rdm_df$layer.3) 

##  
##  Shapiro-Wilk normality test 
##  
## data:  Rdm_df$layer.3 
## W = 0.85715, p-value < 2.2e-16 

shapiro.test(Rdm_df$layer.4) 

##  
##  Shapiro-Wilk normality test 
##  
## data:  Rdm_df$layer.4 
## W = 0.85717, p-value < 2.2e-16 

shapiro.test(Rdm_df$layer.5) 

##  
##  Shapiro-Wilk normality test 
##  
## data:  Rdm_df$layer.5 
## W = 0.87815, p-value < 2.2e-16 

shapiro.test(Rdm_df$layer.6) 

##  
##  Shapiro-Wilk normality test 
##  
## data:  Rdm_df$layer.6 
## W = 0.87816, p-value < 2.2e-16 

#All data are non-normal, non-parametric tests will be used 
 
#test significance of difference in mean values 
wilcox.test(arc_df$layer.1, NAr_df$layer.1) #wet season 

##  
##  Wilcoxon rank sum test with continuity correction 
##  
## data:  arc_df$layer.1 and NAr_df$layer.1 
## W = 8282, p-value = 0.01451 
## alternative hypothesis: true location shift is not equal to 0 

wilcox.test(arc_df$layer.2, NAr_df$layer.2) #wet season 
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##  
##  Wilcoxon rank sum test with continuity correction 
##  
## data:  arc_df$layer.2 and NAr_df$layer.2 
## W = 8282, p-value = 0.01451 
## alternative hypothesis: true location shift is not equal to 0 

wilcox.test(arc_df$layer.3, NAr_df$layer.3) #dry season 

##  
##  Wilcoxon rank sum test with continuity correction 
##  
## data:  arc_df$layer.3 and NAr_df$layer.3 
## W = 10230, p-value = 0.9246 
## alternative hypothesis: true location shift is not equal to 0 

wilcox.test(arc_df$layer.4, NAr_df$layer.4) #dry season 

##  
##  Wilcoxon rank sum test with continuity correction 
##  
## data:  arc_df$layer.4 and NAr_df$layer.4 
## W = 10230, p-value = 0.9246 
## alternative hypothesis: true location shift is not equal to 0 

wilcox.test(arc_df$layer.5, NAr_df$layer.5) #annually 

##  
##  Wilcoxon rank sum test with continuity correction 
##  
## data:  arc_df$layer.5 and NAr_df$layer.5 
## W = 8639, p-value = 0.04403 
## alternative hypothesis: true location shift is not equal to 0 

wilcox.test(arc_df$layer.6, NAr_df$layer.6) #annually 

##  
##  Wilcoxon rank sum test with continuity correction 
##  
## data:  arc_df$layer.6 and NAr_df$layer.6 
## W = 8639, p-value = 0.04403 
## alternative hypothesis: true location shift is not equal to 0 

#test significance of difference between archaeological and random data 
wilcox.test(arc_df$layer.1, Rdm_df$layer.1) #wet season 

##  
##  Wilcoxon rank sum test with continuity correction 
##  
## data:  arc_df$layer.1 and Rdm_df$layer.1 
## W = 134910, p-value = 2.842e-08 
## alternative hypothesis: true location shift is not equal to 0 
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wilcox.test(arc_df$layer.2, Rdm_df$layer.2) #wet season 

##  
##  Wilcoxon rank sum test with continuity correction 
##  
## data:  arc_df$layer.2 and Rdm_df$layer.2 
## W = 134910, p-value = 2.842e-08 
## alternative hypothesis: true location shift is not equal to 0 

wilcox.test(arc_df$layer.3, Rdm_df$layer.3) #dry season 

##  
##  Wilcoxon rank sum test with continuity correction 
##  
## data:  arc_df$layer.3 and Rdm_df$layer.3 
## W = 143790, p-value = 4.044e-05 
## alternative hypothesis: true location shift is not equal to 0 

wilcox.test(arc_df$layer.4, Rdm_df$layer.4) #dry season 

##  
##  Wilcoxon rank sum test with continuity correction 
##  
## data:  arc_df$layer.4 and Rdm_df$layer.4 
## W = 143790, p-value = 4.044e-05 
## alternative hypothesis: true location shift is not equal to 0 

wilcox.test(arc_df$layer.5, Rdm_df$layer.5) #annually 

##  
##  Wilcoxon rank sum test with continuity correction 
##  
## data:  arc_df$layer.5 and Rdm_df$layer.5 
## W = 136258, p-value = 9.746e-08 
## alternative hypothesis: true location shift is not equal to 0 

wilcox.test(arc_df$layer.6, Rdm_df$layer.6) #annually 

##  
##  Wilcoxon rank sum test with continuity correction 
##  
## data:  arc_df$layer.6 and Rdm_df$layer.6 
## W = 136258, p-value = 9.746e-08 
## alternative hypothesis: true location shift is not equal to 0 

Short Wave Infared (SWIR) Analysis 

#Set workding directory 
setwd("C://Users/dsd40/Documents/Planet_Imagery/files") 
 
##EVALUATE SOIL MINERAL COMPOSITION AND WATER RETENTION 
#Load SWIR data from Sentinel-2 
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SWIR1 <- raster("Sent_Month_Comp.tif", band = 13) 
SWIR2 <- raster("Sent_Month_Comp.tif", band = 14) 
 
SWIR_stk <- raster::stack(SWIR1, SWIR2) 
SWIR_clp <- crop(SWIR_stk, AOI) 
 
#Pan sharpen SWIR data using Planet imagery (data fusion from 20m to 3m
) 
##Uses RStoolbox package 
SWIR_PS <- panSharpen(SWIR_clp, Ann_val$Annual_18_20.4, method='pca') 
 
par(mfrow=c(2,2)) 
 

 

#Extract point values 
Arch_Values=extract(SWIR_PS, arch_points, buffer=20, fun=mean) #with an
d without buffer, same results 
NArc_values=extract(SWIR_PS, non_arch_points, buffer=20, fun=mean) #wit
h and without buffer, same result 
NArc_values_cln <- na.omit(NArc_values) 
random_values=extract(SWIR_PS, rsam, buffer=20, fun=mean) 
 
#make data frames from each raster point table 
S2arc_df <- data.frame(Arch_Values) 
S2NAr_df <- data.frame(NArc_values_cln) 
S2Rdm_df <- data.frame(random_values) 
 
#add new column named "cat" (for category) 
S2arc_df$cat <- "Archaeological Site" #archaeological points 
S2NAr_df$cat <- "Non-Archaeological" #non-archaeological points 
S2Rdm_df$cat <- "Random Points" 
#combine both dataframes into a single dataframe 
df2 <- rbind(S2arc_df, S2NAr_df, S2Rdm_df) 
 
# Function to produce summary statistics (mean and +/- sd) 
p1 <- ggplot(df2, aes(df2))+ 
  geom_violin(aes(cat, Sent_Month_Comp.1_pan))+ 
  xlab("")+ 
  ylab("SWIR-1 (1610nm)")+ 
  geom_boxplot(aes(cat, Sent_Month_Comp.1_pan),width=0.1) 
 
p2<- ggplot(df2, aes(df2))+ 
  geom_violin(aes(cat, Sent_Month_Comp.2_pan))+ 
  xlab("")+ 
  ylab("SWIR-2 (2186nm)")+ 
  geom_boxplot(aes(cat, Sent_Month_Comp.2_pan),width=0.1) 
 
#Create Supplemental Figure D-3 



 

289 

 

grid.arrange(p1, p2, ncol=2) 

Test for differences in SWIR values for data 

#Test for normality of data 
shapiro.test(S2arc_df$Sent_Month_Comp.1_pan) 

##  
##  Shapiro-Wilk normality test 
##  
## data:  S2arc_df$Sent_Month_Comp.1_pan 
## W = 0.97472, p-value = 1.193e-05 

shapiro.test(S2arc_df$Sent_Month_Comp.2_pan) 

##  
##  Shapiro-Wilk normality test 
##  
## data:  S2arc_df$Sent_Month_Comp.2_pan 
## W = 0.97795, p-value = 4.762e-05 

shapiro.test(S2NAr_df$Sent_Month_Comp.1_pan) 

##  
##  Shapiro-Wilk normality test 
##  
## data:  S2NAr_df$Sent_Month_Comp.1_pan 
## W = 0.80648, p-value = 1.966e-07 

shapiro.test(S2NAr_df$Sent_Month_Comp.2_pan) 

##  
##  Shapiro-Wilk normality test 
##  
## data:  S2NAr_df$Sent_Month_Comp.2_pan 
## W = 0.83493, p-value = 1.125e-06 

#test significance of difference in mean values 
wilcox.test(S2arc_df$Sent_Month_Comp.1_pan, S2NAr_df$Sent_Month_Comp.1_
pan) 

##  
##  Wilcoxon rank sum test with continuity correction 
##  
## data:  S2arc_df$Sent_Month_Comp.1_pan and S2NAr_df$Sent_Month_Comp.1
_pan 
## W = 12713, p-value = 0.001732 
## alternative hypothesis: true location shift is not equal to 0 

wilcox.test(S2arc_df$Sent_Month_Comp.2_pan, S2NAr_df$Sent_Month_Comp.2_
pan) 
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##  
##  Wilcoxon rank sum test with continuity correction 
##  
## data:  S2arc_df$Sent_Month_Comp.2_pan and S2NAr_df$Sent_Month_Comp.2
_pan 
## W = 11999, p-value = 0.02362 
## alternative hypothesis: true location shift is not equal to 0 

#test significance of difference between archaeological and random poin
ts 
wilcox.test(S2arc_df$Sent_Month_Comp.1_pan, S2Rdm_df$Sent_Month_Comp.1_
pan) 

##  
##  Wilcoxon rank sum test with continuity correction 
##  
## data:  S2arc_df$Sent_Month_Comp.1_pan and S2Rdm_df$Sent_Month_Comp.1
_pan 
## W = 282643, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 

wilcox.test(S2arc_df$Sent_Month_Comp.2_pan, S2Rdm_df$Sent_Month_Comp.2_
pan) 

##  
##  Wilcoxon rank sum test with continuity correction 
##  
## data:  S2arc_df$Sent_Month_Comp.2_pan and S2Rdm_df$Sent_Month_Comp.2
_pan 
## W = 278508, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 

NDWI Analysis 

#Calculate NDWI Index 
NDWI_AN <- (Ann_val$Annual_18_20.4-SWIR_PS$Sent_Month_Comp.1_pan)/(Ann_
val$Annual_18_20.4+SWIR_PS$Sent_Month_Comp.1_pan) 
 
#Extract point values 
Arch_Values=extract(NDWI_AN, arch_points, buffer=20, fun=mean) #with an
d without buffer, same results 
NArc_values=extract(NDWI_AN, non_arch_points, buffer=20, fun=mean) #wit
h and without buffer, same result 
NArc_values_cln <- na.omit(NArc_values) 
random_values=extract(NDWI_AN, rsam, buffer=20, fun=mean) 
 
#make data frames from each raster point table 
S3arc_df <- data.frame(Arch_Values) 
S3NAr_df <- data.frame(NArc_values_cln) 
S3Rdm_df <- data.frame(random_values) 
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#add new column named "cat" (for category) 
S3arc_df$cat <- "Archaeological Site" #archaeological points 
S3NAr_df$cat <- "Non-Archaeological" #non-archaeological points 
S3Rdm_df$cat <- "Random Points" 
 
p1 <- ggplot(S3arc_df, aes(S3arc_df))+ 
  geom_violin(aes(cat, Arch_Values))+ 
  xlab("")+ 
  ylab("NDWI")+ 
  geom_boxplot(aes(cat, Arch_Values),width=0.1)+ 
  ylim(0.99989, 0.999910) 
 
p2<- ggplot(S3NAr_df, aes(S3NAr_df))+ 
  geom_violin(aes(cat, NArc_values_cln))+ 
  xlab("")+ 
  ylab("NDWI")+ 
  geom_boxplot(aes(cat, NArc_values_cln),width=0.1)+ 
  ylim(0.99989, 0.999910) 
 
p3 <- ggplot(S3Rdm_df, aes(S3Rdm_df))+ 
  geom_violin(aes(cat, random_values))+ 
  xlab("")+ 
  ylab("NDWI")+ 
  geom_boxplot(aes(cat, random_values),width=0.1)+ 
  ylim(0.99989, 0.999910) 
 

#Creates Supplemental Figure D-4 
grid.arrange(p1, p2, p3, ncol=3) 

 

#Test for normality of data 
shapiro.test(S3arc_df$Arch_Values) 

##  
##  Shapiro-Wilk normality test 
##  
## data:  S3arc_df$Arch_Values 
## W = 0.77782, p-value < 2.2e-16 

shapiro.test(S3arc_df$Arch_Values) 

##  
##  Shapiro-Wilk normality test 
##  
## data:  S3arc_df$Arch_Values 
## W = 0.77782, p-value < 2.2e-16 

shapiro.test(S3NAr_df$NArc_values_cln)  



 

292 

 

##  
##  Shapiro-Wilk normality test 
##  
## data:  S3NAr_df$NArc_values_cln 
## W = 0.89988, p-value = 0.0001302 

shapiro.test(S3Rdm_df$random_values) 

##  
##  Shapiro-Wilk normality test 
##  
## data:  S3Rdm_df$random_values 
## W = 0.95851, p-value = 3.121e-16 

#test significance of difference in mean values 
wilcox.test(S3arc_df$Arch_Values, S3NAr_df$NArc_values_cln) 

##  
##  Wilcoxon rank sum test with continuity correction 
##  
## data:  S3arc_df$Arch_Values and S3NAr_df$NArc_values_cln 
## W = 8468, p-value = 0.0418 
## alternative hypothesis: true location shift is not equal to 0 

#test significance of difference between archaeological and random poin
ts 
wilcox.test(S3arc_df$Arch_Values, S3Rdm_df$random_values) 

##  
##  Wilcoxon rank sum test with continuity correction 
##  
## data:  S3arc_df$Arch_Values and S3Rdm_df$random_values 
## W = 233192, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 

mean(S3NAr_df$NArc_values_cln) 

## [1] 0.9999005 

mean(S3arc_df$Arch_Values) 

## [1] 0.9999007 

 
Javascript Code for Compiling Sentinel-2 Data. The following code creates a 
composite of Sentinel-2 data over a 5 year timeframe in Google Earth Engine (GEE). For 
interested readers, the code can be executed within GEE by using the following link: 
https://code.earthengine.google.com/67eeee7b0e7cb49beac1237aff1f5f53.  
 
// This code borrows the method described by Orengo et al. (2020) 
// Define a central point in your study area (as X,Y WGS84 decimal 
degrees) and a scale, 

https://code.earthengine.google.com/67eeee7b0e7cb49beac1237aff1f5f53
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// just for visualization purposes. Change the coordinates to center 
the map in your own area 
 
Map.setCenter(-22.086143, 43.304527, 9); 
 
// Create a polygon delimiting the AOI.  
 
// The user can draw their own polygon(as a geometry) delimiting a new 
AOI  
// using the Geometry Imports menu in the top right corner of the map 
area below. 
var geometry = geometry; 
 
print('Study area', geometry.area().divide(1000 * 1000), 'km2'); // 
AOI area km2 for info 
 
////////////// IMPORT & COMPOSITE SENTINEL 2 COLLECTION 
/////////////// 
 
// Function to mask clouds using the Sentinel-2 QA band. 
function maskS2clouds(image) { 
 
  var qa = image.select('QA60'); 
 
  // Bits 10 and 11 are clouds and cirrus, respectively. 
 
  var cloudBitMask = 1 << 10; 
  var cirrusBitMask = 1 << 11; 
 
  // Both flags should be set to zero, indicating clear conditions. 
 
  var mask = qa.bitwiseAnd(cloudBitMask).eq(0).and( 
 
             qa.bitwiseAnd(cirrusBitMask).eq(0)); 
 
  // Return the masked and scaled data, without the QA bands. 
 
  return image.updateMask(mask).divide(10000) 
 
      .select("B.*") 
 
      .copyProperties(image, ["system:time_start"]); 
 
} 
 
// Map the function over one year of data and take the median. 
// Load Sentinel-2 TOA reflectance data. 
 
var s2 = ee.ImageCollection('COPERNICUS/S2') 
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    .filterBounds(geometry) 
 
    .filterDate('2015-6-23', '2020-07-05') 
 
    // Pre-filter to get less cloudy granules. 
 
    .filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 20)) 
 
    .map(maskS2clouds); 
 
// Filter them by two-month periods and extract the average values 
var s2_JanFeb = s2.filter(ee.Filter.dayOfYear(1,60)) 
.median(); 
var s2_MarApr = s2.filter(ee.Filter.dayOfYear(61,120)) 
.median(); 
var s2_MayJun = s2.filter(ee.Filter.dayOfYear(121,180)) 
.median(); 
var s2_JulAug = s2.filter(ee.Filter.dayOfYear(181,240)) 
.median(); 
var s2_SepOct = s2.filter(ee.Filter.dayOfYear(241,300)) 
.median(); 
var s2_NovDec = s2.filter(ee.Filter.dayOfYear(301,360)) 
.median(); 
// Create a multiband composite image 
var s2comp = ee.Image([s2_JanFeb, s2_MarApr, s2_MayJun, s2_JulAug, 
s2_SepOct, s2_NovDec]) 
.clip(geometry); 
 
// Print total Sentinel 2 images employed 
 
print('Sentinel 2 images', s2comp); 
 
// Select the bands of interest form the Image Collection 
 
var s2comp_band = 
s2.select(['B2','B3','B4','B5','B6','B7','B8','B8A','B11','B12']) 
 
  .mean().clip(geometry); 
 
 
// Reduction in the number of decimal places of the values of the 
resulting raster 
// This will not reduce noticeably the quality of the data but it will 
reduce significantly 
// the size of the resulting raster. 
 
var Composite = ee.Image(0).expression( 
 
    'round(img * 10000) / 10000', { 
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      'img': s2comp_band 
 
    }); 
 
print('Composite:', Composite); 
Map.addLayer(Composite); 
 
Export.image.toAsset({ // It is also possible to export to Google 
Drive, just select the option in the dialogue 
 
  image: Composite, 
 
  scale: 10, 
 
  maxPixels: 1e12, 
 
  region: geometry 
 
}); 

 

Javascript Code for Machine Learning Analysis. The following code replicates the 

analysis performed in Google Earth Engine (GEE). The code can be pasted directly into 

GEE’s code editor and run as is to replicate the analysis performed in the manuscript. 

Alternatively, interested users can use the following link to run the analysis in GEE: 

https://code.earthengine.google.com/99ccb498ea588d44a0b3300841163405  

 

// Define a central point in your study area (as X,Y WGS84 decimal degr
// ees) and a scale. If applying to different location, change the coor
// dinates to center the map in your new study region 
 
Map.setCenter(-22.130350, 43.240261, 9); 
 
 
 
// Indicate the number of iterations for the RF algorithm 
 
var iteration = 'it03'; 
 
// Create or load composite image of Planet Imagery 
 
var Composite = ee.Image("users/dylandavis996/Planet_2019_Dif"); 
 
 
// Create a polygon outlining the study area (as a geometry) using the 
// Geometry Imports menu in the top right corner of the map area, below
. 
 
// Create a polygon defining the study area.  

https://code.earthengine.google.com/99ccb498ea588d44a0b3300841163405
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var geometry =  
    ee.Geometry.Polygon( 
        [[[43.20159553966782, -22.21131419742182], 
          [43.315578693964696, -22.22084927789693], 
          [43.34373115978501, -22.05802855054113], 
          [43.23204168734154, -22.03808254866185]]]); 
 
print('Study area', geometry.area().divide(1000 * 1000), 'km2'); // Pri
nts AOI area km2 in Console 
 
 
 
/////////////// MACHINE LEARNING RF CLASSIFIER ///////////////// 
 
 
// Call training data for current iteration (in this case iteration 3). 
// The user wanting to generate their own training data is prompted to 
// use the geometry imports panel in the map view below to create new  
// feature collections (named 'sites' and 'other' if the user wants to 
// reuse the code below) with a property named 'class' and a value of 1 
// and 0 respectively. 
 
var sites = ee.FeatureCollection('users/dylandavis996/training_data/Pla
net_Arch_Train'), 
    other = ee.FeatureCollection('users/dylandavis996/training_data/Pla
net_Other_Train'); 
 
 
// Merge training data 
 
var trn_pols = sites.merge(other); 
 
print(trn_pols, 'train_pols'); 
 
 
// Create variable for bands 
 
var bands = ['b1','b2','b3','b4'];  
 
 
// SampleRegions to extract band values for each pixel in each training 
polygon 
 
var training = Composite.select(bands).sampleRegions({ 
 
  collection: trn_pols, 
 
  properties: ['Class'], 
 
  scale: 5 
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});  
 
 
 
// Apply RF classifier calling mode "probability" 
// To apply a standard RF classifier, call mode "CLASSIFICATION" 
 
var classifier = ee.Classifier.randomForest({'numberOfTrees':128}) 
 
  .setOutputMode('PROBABILITY').train({ 
 
  features: training, 
 
  classProperty: 'Class', 
 
  inputProperties: bands 
 
}); 
 
// Create classified probability raster 
 
var classified = Composite.select(bands).classify(classifier); 
 
 
// Add the resulting classified layer to the Map Window below 
 
Map.addLayer(classified, {min: 0.60, max: 1}, iteration); // It can tak
e several minutes to load 
 
////////////////////// EXPORT OF RESULTING DATASETS /////////////////// 
 
// Data exports as assets so they can be included and visualizes in nex
t iterations 
// You can also export to Google Drive by selecting the option in the d
ialogue box 
 
Export.image.toAsset({  
   
  image: classified, 
 
  description: 'RF_128_Arch' + iteration, 
 
  scale: 5,  
 
  maxPixels: 1e12, 
 
  region: geometry 
 
}); 
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Appendix E:  Supplemental Information from Chapter 7 

This R Markdown includes the code necessary to replicate the analysis in the associated 
manuscript. In what follows, code and its associated description will be provided along with the 
output of each component of the analysis. 

The following code implements a network analysis of ceramic data from Southwest Madagascar 
following the protocol developed by Matt Peeples (2017). The original Script by Matt Peeples can 
be found at: http://www.mattpeeples.net/netstats.html 

 
##Load libraries and necessary datasets 
#Load required libraries 
library(statnet) #for network analysis 

library(tnet) #for network analysis 

library(rgdal) #for mapping GIS files 

library(here) 

#set working directory 
setwd(here()) 
 
#Load data as properly formatted CSV files (See Peeples 2017 for format
ting  information) 
 
# the name of each row (site name) should be the first column in the in
put table 
d_data1 <- read.table(file='Early_Period_Data.csv', sep=',', header=T, 
row.names=1)  
d_data2 <- read.table(file='Middle_Period_Data.csv', sep=',', header=T, 
row.names=1)  
d_data3 <- read.table(file='Late_Period_Data.csv', sep=',', header=T, r
ow.names=1)  
 
#Load shapefile of study area 
AOI <- readOGR(dsn='Velondriake_AOI.shp') 
## OGR data source with driver: ESRI Shapefile  
## Source: "C:\Users\dylan\Documents\School_Work\Dissertation\Ceramic_A
nalysis\Ceramic_Network_Data\Velondriake_AOI.shp", layer: "Velondriake_
AOI" 
## with 1 features 
## It has 1 fields 

##Implement functions for co-presence, Brainerd-Robinson (BR) coefficient, and 
chi-square distance metrics. 

#Function to create a co-occurance dataset using presence/absence 
co.p <- function(x, thresh = 0.1) { 
  # create matrix of proportions from ceramic data 
  temp <- prop.table(as.matrix(x), 1) 
  # define anything with greater than or equal to 0.1 as present (1) 

http://www.mattpeeples.net/netstats.html
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  temp[temp >= thresh] <- 1 
  # define all other cells as absent (0) 
  temp[temp < 1] <- 0 
  # matrix algebraic calculation to find co-occurence (%*% indicates ma
trix 
  # multiplication) 
  out <- temp %*% t(temp) 
  return(out) 
} 
 
# run the function on the datasets 
d_data1P <- co.p(d_data1) #Decoration data 
d_data2P <- co.p(d_data2) #Manufacturing data 
d_data3P <- co.p(d_data3) 
 
# Function for calculating Brainerd-Robinson (BR) coefficients 
# This creates a matrix of similarity values used in many SNAs 
sim.mat <- function(x) { 
  # get names of sites 
  names <- row.names(x) 
  x <- na.omit(x)  # remove any rows with missing data 
  x <- prop.table(as.matrix(x), 1)  # convert to row proportions 
  rd <- dim(x)[1] 
  # create an empty symmetric matrix of 0s 
  results <- matrix(0, rd, rd) 
  # the following dreaded double for-loop goes through every cell in th
e 
  # output data table and calculates the BR value as descried above 
  for (s1 in 1:rd) { 
    for (s2 in 1:rd) { 
      x1Temp <- as.numeric(x[s1, ]) 
      x2Temp <- as.numeric(x[s2, ]) 
      results[s1, s2] <- 2 - (sum(abs(x1Temp - x2Temp))) 
    } 
  } 
  row.names(results) <- names  # assign row names to output 
  colnames(results) <- names  # assign column names to output 
  results <- results/2  # rescale results between 0 and 1 
  results <- round(results, 3)  # round results 
  return(results) 
}  # return the final output table 
 
# Run the BR coefficient function on our sample data 
d_data1BR <- sim.mat(d_data1) #Decoration data 
d_data2BR <- sim.mat(d_data2) #Manufacturing data 
d_data3BR <- sim.mat(d_data3) 
 
# Chi-square (X2) distance function 
chi.dist <- function(x) { 
  rowprof <- x/apply(x, 1, sum)  # calculates the profile for every row 
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  avgprof <- apply(x, 2, sum)/sum(x)  # calculates the average profile 
  # creates a distance object of $\chi^{2}$ distances 
  chid <- dist(as.matrix(rowprof) %*% diag(1/sqrt(avgprof))) 
  # return the reults 
  return(as.matrix(chid)) 
} 
 
# Run the X2 function and then create the rescaled 0-1 version 
d_data1X <- chi.dist(d_data1) #Decoration data 

## Warning in sqrt(avgprof): NaNs produced 

d_data1X01 <- d_data1X/max(d_data1X)  
 
d_data2X <- chi.dist(d_data2)#Manufacturing data 

## Warning in sqrt(avgprof): NaNs produced 

d_data2X01 <- d_data2X/max(d_data2X) 
 
d_data3X <- chi.dist(d_data3) #Decoration data 

## Warning in sqrt(avgprof): NaNs produced 

d_data3X01 <- d_data3X/max(d_data3X)  
 
 
###VISIUALIZING NETWORKS 
 
# create network object from co-occurrence 
Pnet_d1 <- network(d_data1P, directed = F) 
Pnet_d2 <- network(d_data2P, directed = F) 
Pnet_d3 <- network(d_data3P, directed = F) 
# Now let's add names for our nodes based on the row names of our origi
nal 
# matrix 
Pnet_d1 %v% "vertex.names" <- row.names(d_data1P) 
Pnet_d2 %v% "vertex.names" <- row.names(d_data2P) 
Pnet_d3 %v% "vertex.names" <- row.names(d_data3P) 
# look at the results 
Pnet_d1 

##  Network attributes: 
##   vertices = 48  
##   directed = FALSE  
##   hyper = FALSE  
##   loops = FALSE  
##   multiple = FALSE  
##   bipartite = FALSE  
##   total edges= 1119  
##     missing edges= 0  
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##     non-missing edges= 1119  
##  
##  Vertex attribute names:  
##     vertex.names  
##  
##  Edge attribute names not shown 

Pnet_d2 

##  Network attributes: 
##   vertices = 86  
##   directed = FALSE  
##   hyper = FALSE  
##   loops = FALSE  
##   multiple = FALSE  
##   bipartite = FALSE  
##   total edges= 3655  
##     missing edges= 0  
##     non-missing edges= 3655  
##  
##  Vertex attribute names:  
##     vertex.names  
##  
##  Edge attribute names not shown 

Pnet_d3 

##  Network attributes: 
##   vertices = 146  
##   directed = FALSE  
##   hyper = FALSE  
##   loops = FALSE  
##   multiple = FALSE  
##   bipartite = FALSE  
##   total edges= 10559  
##     missing edges= 0  
##     non-missing edges= 10559  
##  
##  Vertex attribute names:  
##     vertex.names  
##  
##  Edge attribute names not shown 

# plot network using default layout 
par(mfrow = c(2, 3)) 
par(mar=c(0.5,1,1,0.5)) 
 
plot(Pnet_d1, edge.col = "gray", edge.lwd = 0.10, vertex.cex = 0.75, ma
in = "Co-Presence network, Early Period") 
plot(Pnet_d2, edge.col = "gray", edge.lwd = 0.10, vertex.cex = 0.75, ma
in = "Co-Presence network, Middle Period") 
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plot(Pnet_d3, edge.col = "gray", edge.lwd = 0.10, vertex.cex = 0.75, ma
in = "Co-Presence network, Late Period") 
# plot network spatially using geographic coordinates 
plot(Pnet_d1, edge.col = "gray", edge.lwd = 0.10, vertex.cex = 0.5, mai
n = "Spatial CP Network, Early Period",coord = d_data1[,10:11]) 
plot(AOI, add=T) #overlay network with coastline of study area 
plot(Pnet_d2, edge.col = "gray", edge.lwd = 0.10, vertex.cex = 0.5, mai
n = "Spatial CP Network, Middle Period",coord = d_data2[,10:11]) 
plot(AOI, add=T) #overlay network with coastline of study area 
 
plot(Pnet_d3, edge.col = "gray", edge.lwd = 0.10, vertex.cex = 0.5, mai
n = "Spatial CP Network, Late Period",coord = d_data3[,10:11]) 
plot(AOI, add=T) #overlay network with coastline of study area 

 

par(mfrow = c(1, 1))  # return to single plotting mode 
 
 
# Define our binary network object from BR similarity 
BRnet_d1 <- network(event2dichot(d_data1BR, method = "absolute", thresh 
= 0.6),  
                 directed = F) 
BRnet_d2 <- network(event2dichot(d_data2BR, method = "absolute", thresh 
= 0.6),  
                 directed = F) 
BRnet_d3 <- network(event2dichot(d_data3BR, method = "absolute", thresh 
= 0.6),  
                 directed = F) 
# Add names for nodes based on the row names of the original matrix 
BRnet_d1 %v% "vertex.names" <- row.names(d_data1BR) 
BRnet_d2 %v% "vertex.names" <- row.names(d_data2BR) 
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BRnet_d3 %v% "vertex.names" <- row.names(d_data3BR) 
# look at the results. 
BRnet_d1 

##  Network attributes: 
##   vertices = 48  
##   directed = FALSE  
##   hyper = FALSE  
##   loops = FALSE  
##   multiple = FALSE  
##   bipartite = FALSE  
##   total edges= 351  
##     missing edges= 0  
##     non-missing edges= 351  
##  
##  Vertex attribute names:  
##     vertex.names  
##  
## No edge attributes 

BRnet_d2 

##  Network attributes: 
##   vertices = 86  
##   directed = FALSE  
##   hyper = FALSE  
##   loops = FALSE  
##   multiple = FALSE  
##   bipartite = FALSE  
##   total edges= 1743  
##     missing edges= 0  
##     non-missing edges= 1743  
##  
##  Vertex attribute names:  
##     vertex.names  
##  
##  Edge attribute names not shown 

BRnet_d3 

##  Network attributes: 
##   vertices = 146  
##   directed = FALSE  
##   hyper = FALSE  
##   loops = FALSE  
##   multiple = FALSE  
##   bipartite = FALSE  
##   total edges= 4068  
##     missing edges= 0  
##     non-missing edges= 4068  
##  
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##  Vertex attribute names:  
##     vertex.names  
##  
##  Edge attribute names not shown 

# plot network using default layout 
par(mfrow = c(2, 3)) 
par(mar=c(0.5,1,1,0.5)) 
 
plot(BRnet_d1, edge.col = "gray", edge.lwd = 0.001, vertex.cex = 0.75, 
main = "BR network, Early Period") 
plot(BRnet_d2, edge.col = "gray", edge.lwd = 0.001, vertex.cex = 0.75, 
main = "BR network, Middle Period") 
plot(BRnet_d3, edge.col = "gray", edge.lwd = 0.001, vertex.cex = 0.75, 
main = "BR network, Late Period") 
# plot network spatially using geographic coordinates 
plot(BRnet_d1, edge.col = "gray", edge.lwd = 0.001, vertex.cex = 0.5, m
ain = "Spatial BR Network",coord = d_data1[,10:11]) 
plot(AOI, add=T) #overlay network with coastline of study area 
plot(BRnet_d2, edge.col = "gray", edge.lwd = 0.001, vertex.cex = 0.5, m
ain = "Spatial BR Network",coord = d_data2[,10:11]) 
plot(AOI, add=T) #overlay network with coastline of study area 
plot(BRnet_d3, edge.col = "gray", edge.lwd = 0.001, vertex.cex = 0.5, m
ain = "Spatial BR Network",coord = d_data3[,10:11]) 
plot(AOI, add=T) #overlay network with coastline of study area 

 

par(mfrow = c(1, 1))  # return to single plotting mode 
 
 
# Plot X2 distance similarity index 
# This uses the 1 minus dataX01 calculation to convert 
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# X2 distance to a similarity (following Peeples 2017) 
Xnet_d1 <- network(event2dichot(1 - d_data1X01, method = "quantile", th
resh = 0.8),  
                directed = F) 
Xnet_d2 <- network(event2dichot(1 - d_data2X01, method = "quantile", th
resh = 0.8),  
                directed = F) 
Xnet_d3 <- network(event2dichot(1 - d_data3X01, method = "quantile", th
resh = 0.8),  
                directed = F) 
 
# Once again add vertex names 
Xnet_d1 %v% "vertex.names" <- row.names(d_data1X01) 
Xnet_d2 %v% "vertex.names" <- row.names(d_data2X01) 
Xnet_d3 %v% "vertex.names" <- row.names(d_data3X01) 
# look at the results 
Xnet_d1 

##  Network attributes: 
##   vertices = 48  
##   directed = FALSE  
##   hyper = FALSE  
##   loops = FALSE  
##   multiple = FALSE  
##   bipartite = FALSE  
##   total edges= 206  
##     missing edges= 0  
##     non-missing edges= 206  
##  
##  Vertex attribute names:  
##     vertex.names  
##  
## No edge attributes 

Xnet_d2 

##  Network attributes: 
##   vertices = 86  
##   directed = FALSE  
##   hyper = FALSE  
##   loops = FALSE  
##   multiple = FALSE  
##   bipartite = FALSE  
##   total edges= 696  
##     missing edges= 0  
##     non-missing edges= 696  
##  
##  Vertex attribute names:  
##     vertex.names  
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##  
## No edge attributes 

Xnet_d3 

##  Network attributes: 
##   vertices = 146  
##   directed = FALSE  
##   hyper = FALSE  
##   loops = FALSE  
##   multiple = FALSE  
##   bipartite = FALSE  
##   total edges= 2058  
##     missing edges= 0  
##     non-missing edges= 2058  
##  
##  Vertex attribute names:  
##     vertex.names  
##  
##  Edge attribute names not shown 

# plot network using default layout 
par(mfrow = c(2, 3)) 
par(mar=c(0.5,1,1,0.5)) 
 
plot(Xnet_d1, edge.col = "gray", edge.lwd = 0.001, vertex.cex = 0.75, m
ain = "Chi-squared network \nEarly Period") 
plot(Xnet_d2, edge.col = "gray", edge.lwd = 0.001, vertex.cex = 0.75, m
ain = "Chi-squared network \nMiddle Period") 
plot(Xnet_d3, edge.col = "gray", edge.lwd = 0.001, vertex.cex = 0.75, m
ain = "Chi-squared network \nLate Period") 
 
# plot network using geographic coordinates 
plot(Xnet_d1, edge.col = "gray", edge.lwd = 0.75, vertex.cex = 0.5, coo
rd = d_data1[,  
                                                                              
10:11]) 
plot(AOI, add=T) #overlay network with coastline of study area 
plot(Xnet_d2, edge.col = "gray", edge.lwd = 0.75, vertex.cex = 0.5, coo
rd = d_data2[,  
                                                                              
10:11]) 
plot(AOI, add=T) #overlay network with coastline of study  
 
plot(Xnet_d3, edge.col = "gray", edge.lwd = 0.75, vertex.cex = 0.5, coo
rd = d_data3[,  
                                                                              
10:11]) 
plot(AOI, add=T) #overlay network with coastline of study area 
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par(mfrow = c(1, 1)) 

#Peeples (2017) finds that weighted networks do not perform well with similarity 
or distance matrices, so we do not use them here. 

Calculate Raw Data Values of Network Connectivity 

# Calculate centrality scores for binary networks 
net.stats <- function(y) { 
  # calculate degree centrality 
  dg <- as.matrix(sna::degree(y, gmode = "graph")) 
  # calculate and scale eigenvector centrality 
  eg <- as.matrix(sna::evcent(y, use.eigen = TRUE)) 
  eg <- sqrt((eg^2) * length(eg)) 
  # calculate betweenness centrality 
  bw <- sna::betweenness(y, gmode = "graph") 
  # combine centrality scores into matrix 
  output <- cbind(dg, eg, bw) 
  rownames(output) <- rownames(as.matrix(y)) 
  colnames(output) <- c("dg", "eg", "bw") 
  return(output) 
}  # return results of this function 
 
# net stats for binary co-presence network 
co.p.stats_d <- net.stats(Pnet_d1) 
co.p.stats_d2 <- net.stats(Pnet_d2) 
co.p.stats_d3 <- net.stats(Pnet_d3) 
# net stats for binary BR similarity network 
BR.stats_d <- net.stats(BRnet_d1) 
BR.stats_d2 <- net.stats(BRnet_d2) 
BR.stats_d3 <- net.stats(BRnet_d3) 
 
# net stats for binary X^2 similarity network (1-distance) 



 

308 

 

X.stats_d <- net.stats(Xnet_d1) 
X.stats_d2 <- net.stats(Xnet_d2) 
X.stats_d3 <- net.stats(Xnet_d3) 
head(X.stats_d) 

##            dg           eg bw 
## G-11-20     1 2.480331e-05  0 
## VATO Za003  0 3.076740e-15  0 
## G-48-20     2 3.797514e-04 36 
## LSS_52      3 1.534534e-02 36 
## GI118       2 1.528389e-02  0 
## GI128       1 1.002275e-03  0 

#write.csv(X.stats_d3, "X2_1700_1900_Stats.csv") 
 
# The following function does the same calculation as above but is set 
up to 
# work with the output of net.stats and net.stats.wt 
nsim <- 1000 
 
samp.frac <- c("S90", "S80", "S70", "S60", "S50", "S40", "S30", "S20", 
"S10") 
 
cv.resamp.bin <- function(x) { 
  # calculate all network stats for the original network 
  stats.g <- net.stats(x) 
  mat <- as.matrix(x) 
  dim.x <- dim(mat)[1]  # count number of rows (nodes) 
  # define empty matrices for output 
  dg.mat <- matrix(NA, nsim, 9) 
  ev.mat <- matrix(NA, nsim, 9) 
  bw.mat <- matrix(NA, nsim, 9) 
  # add column names based on sampling fraction 
  colnames(dg.mat) <- samp.frac 
  colnames(ev.mat) <- samp.frac 
  colnames(bw.mat) <- samp.frac 
   
  # this double loop goes through each sampling fraction and each rando
m 
  # replicate to cacluate centrality statistics and runs a Spearman's r
ho 
  # correlation between the resulting centrality values and the origina
l 
  # sample 
  for (j in 1:9) { 
    for (i in 1:nsim) { 
      sub.samp <- sample(seq(1, dim.x), size = round(dim.x * ((10 - j)/
10),  
                                                     0), replace = F) 
      temp.stats <- net.stats(mat[sub.samp, sub.samp]) 



 

309 

 

      dg.mat[i, j] <- suppressWarnings(cor(temp.stats[, 1], stats.g[sub
.samp,  
                                                                    1], 
method = "spearman")) 
      ev.mat[i, j] <- suppressWarnings(cor(temp.stats[, 2], stats.g[sub
.samp,  
                                                                    2], 
method = "spearman")) 
      bw.mat[i, j] <- suppressWarnings(cor(temp.stats[, 3], stats.g[sub
.samp,  
                                                                    3], 
method = "spearman")) 
    } 
  } 
  out.list <- list()  # create list for output and populate it 
  out.list[[1]] <- dg.mat 
  out.list[[2]] <- ev.mat 
  out.list[[3]] <- bw.mat 
  return(out.list) 
}  # return the resulting list 
 
cop.rs_d <- cv.resamp.bin(Pnet_d1) 
cop.rs_d2 <- cv.resamp.bin(Pnet_d2) 
cop.rs_d3 <- cv.resamp.bin(Pnet_d3) 
BR.rs_d <- cv.resamp.bin(BRnet_d1) 
BR.rs_d2 <- cv.resamp.bin(BRnet_d2) 
BR.rs_d3 <- cv.resamp.bin(BRnet_d3) 
X.rs_d <- cv.resamp.bin(Xnet_d1) 
X.rs_d2 <- cv.resamp.bin(Xnet_d2) 
X.rs_d3 <- cv.resamp.bin(Xnet_d3) 
 
##PLOT DECORATIVE NETWORKS 
par(mfrow = c(3, 3))  # set up for 3 by 3 plotting 
par(mar=c(1,1,3,1)) 
# plot boxplots by sampling fraction for each measure and each network 
type 
boxplot(cop.rs_d[[1]], ylim = c(0, 1), main = "co-presence - degree", x
lab = "sampling fraction",  
        ylab = "Spearmans rho") 
boxplot(cop.rs_d[[2]], ylim = c(0, 1), main = "co-presence - eigenvecto
r", xlab = "sampling fraction") 
boxplot(cop.rs_d[[3]], ylim = c(0, 1), main = "co-presence - betweennes
s", xlab = "sampling fraction") 
boxplot(cop.rs_d2[[1]], ylim = c(0, 1), main = "co-presence - degree", 
xlab = "sampling fraction",  
        ylab = "Spearmans rho") 
boxplot(cop.rs_d2[[2]], ylim = c(0, 1), main = "co-presence - eigenvect
or", xlab = "sampling fraction") 
boxplot(cop.rs_d2[[3]], ylim = c(0, 1), main = "co-presence - betweenne
ss", xlab = "sampling fraction") 
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boxplot(cop.rs_d3[[1]], ylim = c(0, 1), main = "co-presence - degree", 
xlab = "sampling fraction",  
        ylab = "Spearmans rho") 
boxplot(cop.rs_d3[[2]], ylim = c(0, 1), main = "co-presence - eigenvect
or", xlab = "sampling fraction") 
boxplot(cop.rs_d3[[3]], ylim = c(0, 1), main = "co-presence - betweenne
ss", xlab = "sampling fraction") 

 

par(mfrow = c(3, 3))  # set up for 3 by 3 plotting 
par(mar=c(1,1,3,1)) 
 
boxplot(BR.rs_d[[1]], ylim = c(0, 1), main = "BR - degree", xlab = "sam
pling fraction",  
        ylab = "Spearmans rho") 
boxplot(BR.rs_d[[2]], ylim = c(0, 1), main = "BR - eigenvector", xlab = 
"sampling fraction") 
boxplot(BR.rs_d[[3]], ylim = c(0, 1), main = "BR - betweenness", xlab = 
"sampling fraction") 
boxplot(BR.rs_d2[[1]], ylim = c(0, 1), main = "BR - degree", xlab = "sa
mpling fraction",  
        ylab = "Spearmans rho") 
boxplot(BR.rs_d2[[2]], ylim = c(0, 1), main = "BR - eigenvector", xlab 
= "sampling fraction") 
boxplot(BR.rs_d2[[3]], ylim = c(0, 1), main = "BR - betweenness", xlab 
= "sampling fraction") 
boxplot(BR.rs_d3[[1]], ylim = c(0, 1), main = "BR - degree", xlab = "sa
mpling fraction",  
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        ylab = "Spearmans rho") 
boxplot(BR.rs_d3[[2]], ylim = c(0, 1), main = "BR - eigenvector", xlab 
= "sampling fraction") 
boxplot(BR.rs_d3[[3]], ylim = c(0, 1), main = "BR - betweenness", xlab 
= "sampling fraction") 

 

par(mfrow = c(3, 3))  # set up for 3 by 3 plotting 
par(mar=c(1,1,3,1)) 
 
boxplot(X.rs_d[[1]], ylim = c(0, 1), main = "Chi squared - degree", xla
b = "sampling fraction",  
        ylab = "Spearmans rho") 
boxplot(X.rs_d[[2]], ylim = c(0, 1), main = "Chi squared - eigenvector"
, xlab = "sampling fraction") 
boxplot(X.rs_d[[3]], ylim = c(0, 1), main = "Chi squared - betweenness"
, xlab = "sampling fraction") 
boxplot(X.rs_d2[[1]], ylim = c(0, 1), main = "Chi squared - degree", xl
ab = "sampling fraction",  
        ylab = "Spearmans rho") 
boxplot(X.rs_d2[[2]], ylim = c(0, 1), main = "Chi squared - eigenvector
", xlab = "sampling fraction") 
boxplot(X.rs_d2[[3]], ylim = c(0, 1), main = "Chi squared - betweenness
", xlab = "sampling fraction") 
boxplot(X.rs_d3[[1]], ylim = c(0, 1), main = "Chi squared - degree", xl
ab = "sampling fraction",  
        ylab = "Spearmans rho") 
boxplot(X.rs_d3[[2]], ylim = c(0, 1), main = "Chi squared - eigenvector
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", xlab = "sampling fraction") 
boxplot(X.rs_d3[[3]], ylim = c(0, 1), main = "Chi squared - betweenness
", xlab = "sampling fraction") 

 

##Assess missing nodes within dataset 
#NODE ASSESSMENT 
nsim <- 1000  #set number of replicates 
 
resamp.node <- function(x, samp.frac) { 
  mat <- as.matrix(x) 
  dim.x <- dim(mat)[1] 
  out.mat <- matrix(NA, dim.x, nsim) 
  for (i in 1:nsim) { 
    sub.samp <- sample(seq(1, dim.x), size = round(dim.x * samp.frac, 0
),  
                       replace = F) 
    # calculate centrality statistic for a given sub-sample and put in 
output 
    # matrix 
    temp.stats <- sna::degree(mat[sub.samp, sub.samp], gmode = "graph") 
    out.mat[sub.samp, i] <- temp.stats 
  } 
  return(out.mat) 
} 
#ASSESSMENT OF DECORATIVE NETWORKS 
 
# calculate the rank order of degree centrality in the CP network 
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top.dg <- rank(-sna::degree(Pnet_d1), ties.method = "min") 
par(mfrow = c(2, 2)) 
P.resamp <- resamp.node(Pnet_d1, samp.frac = 0.8)  #samp.frac is 80% 
# calculate the rank order of the replicates and plot the top 4 as barp
lots 
# showing rank across all replicates 
for (i in 1:4) { 
  barplot(table(apply(-P.resamp, 2, rank, ties.method = "random", na.la
st = "keep")[order(top.dg)[i],  
  ]), main = paste("samp.frac=80%, rank = ", top.dg[order(top.dg)[i]])) 
} 

 

top.dg <- rank(-sna::degree(Pnet_d2), ties.method = "min") 
par(mfrow = c(2, 2)) 
P.resamp <- resamp.node(Pnet_d2, samp.frac = 0.8)  #samp.frac is 80% 
# calculate the rank order of the replicates and plot the top 4 as barp
lots 
# showing rank across all replicates 
for (i in 1:4) { 
  barplot(table(apply(-P.resamp, 2, rank, ties.method = "random", na.la
st = "keep")[order(top.dg)[i],  
  ]), main = paste("samp.frac=80%, rank = ", top.dg[order(top.dg)[i]])) 
} 
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top.dg <- rank(-sna::degree(Pnet_d3), ties.method = "min") 
par(mfrow = c(2, 2)) 
P.resamp <- resamp.node(Pnet_d3, samp.frac = 0.8)  #samp.frac is 80% 
# calculate the rank order of the replicates and plot the top 4 as barp
lots 
# showing rank across all replicates 
 
for (i in 1:4) { 
  barplot(table(apply(-P.resamp, 2, rank, ties.method = "random", na.la
st = "keep")[order(top.dg)[i],  
  ]), main = paste("samp.frac=80%, rank = ", top.dg[order(top.dg)[i]])) 
} 
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# calculate the rank order of degree centrality in the BR network 
top.dg <- rank(-sna::degree(BRnet_d1), ties.method = "min") 
par(mfrow = c(2, 2)) 
BR.resamp <- resamp.node(BRnet_d1, samp.frac = 0.8)  #samp.frac is 80% 
# calculate the rank order of the replicates and plot the top 4 as barp
lots 
# showing rank across all replicates 
for (i in 1:4) { 
  barplot(table(apply(-BR.resamp, 2, rank, ties.method = "random", na.l
ast = "keep")[order(top.dg)[i],  
  ]), main = paste("samp.frac=80%, rank = ", top.dg[order(top.dg)[i]])) 
} 
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# calculate the rank order of degree centrality in the BR network 
top.dg <- rank(-sna::degree(BRnet_d2), ties.method = "min") 
par(mfrow = c(2, 2)) 
BR.resamp <- resamp.node(BRnet_d2, samp.frac = 0.8)  #samp.frac is 80% 
# calculate the rank order of the replicates and plot the top 4 as barp
lots 
# showing rank across all replicates 
for (i in 1:4) { 
  barplot(table(apply(-BR.resamp, 2, rank, ties.method = "random", na.l
ast = "keep")[order(top.dg)[i],  
  ]), main = paste("samp.frac=80%, rank = ", top.dg[order(top.dg)[i]])) 
} 
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# calculate the rank order of degree centrality in the BR network 
top.dg <- rank(-sna::degree(BRnet_d3), ties.method = "min") 
par(mfrow = c(2, 2)) 
BR.resamp <- resamp.node(BRnet_d3, samp.frac = 0.8)  #samp.frac is 80% 
# calculate the rank order of the replicates and plot the top 4 as barp
lots 
# showing rank across all replicates 
for (i in 1:4) { 
  barplot(table(apply(-BR.resamp, 2, rank, ties.method = "random", na.l
ast = "keep")[order(top.dg)[i],  
  ]), main = paste("samp.frac=80%, rank = ", top.dg[order(top.dg)[i]])) 
} 
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# calculate the rank order of degree centrality in the BR network 
top.dg <- rank(-sna::degree(Xnet_d1), ties.method = "min") 
par(mfrow = c(2, 2)) 
X.resamp <- resamp.node(Xnet_d1, samp.frac = 0.8)  #samp.frac is 80% 
# calculate the rank order of the replicates and plot the top 4 as barp
lots 
# showing rank across all replicates 
for (i in 1:4) { 
  barplot(table(apply(-X.resamp, 2, rank, ties.method = "random", na.la
st = "keep")[order(top.dg)[i],  
  ]), main = paste("samp.frac=80%, rank = ", top.dg[order(top.dg)[i]])) 
} 
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# calculate the rank order of degree centrality in the BR network 
top.dg <- rank(-sna::degree(Xnet_d2), ties.method = "min") 
par(mfrow = c(2, 2)) 
X.resamp <- resamp.node(Xnet_d2, samp.frac = 0.8)  #samp.frac is 80% 
# calculate the rank order of the replicates and plot the top 4 as barp
lots 
# showing rank across all replicates 
for (i in 1:4) { 
  barplot(table(apply(-X.resamp, 2, rank, ties.method = "random", na.la
st = "keep")[order(top.dg)[i],  
  ]), main = paste("samp.frac=80%, rank = ", top.dg[order(top.dg)[i]])) 
} 
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# calculate the rank order of degree centrality in the BR network 
top.dg <- rank(-sna::degree(Xnet_d3), ties.method = "min") 
par(mfrow = c(2, 2)) 
X.resamp <- resamp.node(Xnet_d3, samp.frac = 0.8)  #samp.frac is 80% 
# calculate the rank order of the replicates and plot the top 4 as barp
lots 
# showing rank across all replicates 
for (i in 1:4) { 
  barplot(table(apply(-X.resamp, 2, rank, ties.method = "random", na.la
st = "keep")[order(top.dg)[i],  
  ]), main = paste("samp.frac=80%, rank = ", top.dg[order(top.dg)[i]])) 
} 
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##Assess missing edges in dataset 
# ASSESS MISSING EDGES 
# set up to work with the output of net.stats 
nsim <- 1000 
samp.frac <- c("S90", "S80", "S70", "S60", "S50", "S40", "S30", "S20", 
"S10") 
 
cv.resamp.edge <- function(x) { 
  stats.g <- net.stats(x) 
  mat <- as.matrix(x) 
  dim.x <- dim(mat)[1] 
  dg.mat <- matrix(NA, nsim, 9) 
  ev.mat <- matrix(NA, nsim, 9) 
  bw.mat <- matrix(NA, nsim, 9) 
  colnames(dg.mat) <- samp.frac 
  colnames(ev.mat) <- samp.frac 
  colnames(bw.mat) <- samp.frac 
   
  for (j in 1:9) { 
    for (i in 1:nsim) { 
      sub.samp <- sample(seq(1, network.edgecount(x)), size = round(net
work.edgecount(x) *  
                                                                      (
j/10), 0), replace = F) 
      temp.net <- x 
      net.reduced <- network::delete.edges(temp.net, sub.samp) 
      temp.stats <- net.stats(net.reduced) 
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      dg.mat[i, j] <- cor(temp.stats[, 1], stats.g[, 1], method = "spea
rman") 
      ev.mat[i, j] <- cor(temp.stats[, 2], stats.g[, 2], method = "spea
rman") 
      bw.mat[i, j] <- cor(temp.stats[, 3], stats.g[, 3], method = "spea
rman") 
    } 
  } 
  out.list <- list() 
  out.list[[1]] <- dg.mat 
  out.list[[2]] <- ev.mat 
  out.list[[3]] <- bw.mat 
  return(out.list) 
} 
 
#ASSESS DECORATIVE NETWORKS 
 
# run the script for our three binary networks 
cop.edge.d <- cv.resamp.edge(Pnet_d1) 
BR.edge.d <- cv.resamp.edge(BRnet_d1) 
X.edge.d <- cv.resamp.edge(Xnet_d1) 
 
cop.edge.d2 <- cv.resamp.edge(Pnet_d2) 

BR.edge.d2 <- cv.resamp.edge(BRnet_d2) 
X.edge.d2 <- cv.resamp.edge(Xnet_d2) 
 
cop.edge.d3 <- cv.resamp.edge(Pnet_d3) 
BR.edge.d3 <- cv.resamp.edge(BRnet_d3) 
X.edge.d3 <- cv.resamp.edge(Xnet_d3) 
 
par(mfrow = c(3, 3)) 
boxplot(cop.edge.d[[1]], ylim = c(0, 1), main = "Co-presence - degree", 
xlab = "sampling fraction",  
        ylab = "Spearmans rho") 
boxplot(cop.edge.d[[2]], ylim = c(0, 1), main = "Co-presence - eigenvec
tor", xlab = "sampling fraction") 
boxplot(cop.edge.d[[3]], ylim = c(0, 1), main = "Co-presence - betweenn
ess", xlab = "sampling fraction") 
boxplot(BR.edge.d[[1]], ylim = c(0, 1), main = "BR - degree", xlab = "s
ampling fraction",  
        ylab = "Spearmans rho") 
boxplot(BR.edge.d[[2]], ylim = c(0, 1), main = "BR - eigenvector", xlab 
= "sampling fraction") 
boxplot(BR.edge.d[[3]], ylim = c(0, 1), main = "BR - betweenness", xlab 
= "sampling fraction") 
boxplot(X.edge.d[[1]], ylim = c(0, 1), main = "Chi squared - degree", x
lab = "sampling fraction",  
        ylab = "Spearmans rho") 
boxplot(X.edge.d[[2]], ylim = c(0, 1), main = "Chi squared - eigenvecto
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r", xlab = "sampling fraction") 
boxplot(X.edge.d[[3]], ylim = c(0, 1), main = "Chi squared - betweennes
s", xlab = "sampling fraction") 

 

par(mfrow = c(3, 3)) 
boxplot(cop.edge.d2[[1]], ylim = c(0, 1), main = "Co-presence - degree"
, xlab = "sampling fraction",  
        ylab = "Spearmans rho") 
boxplot(cop.edge.d2[[2]], ylim = c(0, 1), main = "Co-presence - eigenve
ctor", xlab = "sampling fraction") 
boxplot(cop.edge.d2[[3]], ylim = c(0, 1), main = "Co-presence - between
ness", xlab = "sampling fraction") 
boxplot(BR.edge.d2[[1]], ylim = c(0, 1), main = "BR - degree", xlab = "
sampling fraction",  
        ylab = "Spearmans rho") 
boxplot(BR.edge.d2[[2]], ylim = c(0, 1), main = "BR - eigenvector", xla
b = "sampling fraction") 
boxplot(BR.edge.d2[[3]], ylim = c(0, 1), main = "BR - betweenness", xla
b = "sampling fraction") 
boxplot(X.edge.d2[[1]], ylim = c(0, 1), main = "Chi squared - degree", 
xlab = "sampling fraction",  
        ylab = "Spearmans rho") 
boxplot(X.edge.d2[[2]], ylim = c(0, 1), main = "Chi squared - eigenvect
or", xlab = "sampling fraction") 
boxplot(X.edge.d2[[3]], ylim = c(0, 1), main = "Chi squared - betweenne
ss", xlab = "sampling fraction") 



 

324 

 

 

par(mfrow = c(3, 3)) 
boxplot(cop.edge.d3[[1]], ylim = c(0, 1), main = "Co-presence - degree"
, xlab = "sampling fraction",  
        ylab = "Spearmans rho") 
boxplot(cop.edge.d3[[2]], ylim = c(0, 1), main = "Co-presence - eigenve
ctor", xlab = "sampling fraction") 
boxplot(cop.edge.d3[[3]], ylim = c(0, 1), main = "Co-presence - between
ness", xlab = "sampling fraction") 
boxplot(BR.edge.d3[[1]], ylim = c(0, 1), main = "BR - degree", xlab = "
sampling fraction",  
        ylab = "Spearmans rho") 
boxplot(BR.edge.d3[[2]], ylim = c(0, 1), main = "BR - eigenvector", xla
b = "sampling fraction") 
boxplot(BR.edge.d3[[3]], ylim = c(0, 1), main = "BR - betweenness", xla
b = "sampling fraction") 
boxplot(X.edge.d3[[1]], ylim = c(0, 1), main = "Chi squared - degree", 
xlab = "sampling fraction",  
        ylab = "Spearmans rho") 
boxplot(X.edge.d3[[2]], ylim = c(0, 1), main = "Chi squared - eigenvect
or", xlab = "sampling fraction") 
boxplot(X.edge.d3[[3]], ylim = c(0, 1), main = "Chi squared - betweenne
ss", xlab = "sampling fraction") 



 

325 

 

 

##Check for additional potential errors with missing data. This helps to validate 
our conclusions despite limited datasets 
###CHECK FOR SAMPLING ERRORS AND BIASES IN DATASET 
## This code was originally written by Peeples (2017) and uses 
## simulations to check for sampling issues 
 
nsim <- 100 # we use 100 simulations due to computational limitations. 
We did assess the data using larger numbers of simulations (200, 500, 1
000) and it provided identical results, but also occasionally crashed t
he computer used for analysis. 
 
net.prob <- function(x) { 
  x <- as.matrix(x) 
  x[x < 0] <- 0  # define threshold for excluding edges 
  net.list <- list() 
  for (i in 1:nsim) { 
    y <- x 
    for (j in 1:length(x)) { 
      y[j] <- rbinom(1, 1, prob = x[j]) 
    } 
    net.list[[i]] <- network(y, directed = F) 
  } 
  return(net.list) 
} 
 
#ASSESS DECORATIVE NETWORKS 
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# Run the script on the BR similarity matrix 
BRprob <- net.prob(d_data1BR) 
# set up matrix and calculate eigenvector centrality for every replicat
e 
dg.mat <- matrix(NA, nrow(d_data1BR), nsim) 
for (i in 1:nsim) { 
  dg.mat[, i] <- sna::degree(BRprob[[i]]) 
} 
# show boxplot of degree centrality sorted by the degree cent score in 
the 
# original similarity matrix 
boxplot(t(dg.mat[order(rowSums(d_data1BR)), ]), main = "Degree") 

 

ev.mat <- matrix(NA, nrow(d_data1BR), nsim) 
for (i in 1:nsim) { 
  ev.mat[, i] <- sna::evcent(BRprob[[i]]) 
} 
# show boxplot of eigenvector centrality sorted by the EV cent score in 
the 
# original similarity matrix 
boxplot(t(ev.mat[order(sna::evcent(d_data1BR)), ]), main = "Eigenvector
") 
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bw.mat <- matrix(NA, nrow(d_data1BR), nsim) 
for (i in 1:nsim) { 
  bw.mat[, i] <- sna::betweenness(BRprob[[i]]) 
} 
# show boxplot of betweenness centrality sorted by the betweenness cent 
# score in the original similarity matrix 
boxplot(t(bw.mat[order(betweenness_w(d_data1BR)[, 2]), ]), main = "Betw
eenness") 

## Warning in as.tnet(net, type = "weighted one-mode tnet"): There were 
self-loops 
## in the edgelist, these were removed 
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# Run the script on the BR similarity matrix 
BRprob2 <- net.prob(d_data2BR) 
# set up matrix and calculate eigenvector centrality for every replicat
e 
dg.mat <- matrix(NA, nrow(d_data2BR), nsim) 
for (i in 1:nsim) { 
  dg.mat[, i] <- sna::degree(BRprob2[[i]]) 
} 
# show boxplot of degree centrality sorted by the degree cent score in 
the 
# original similarity matrix 
boxplot(t(dg.mat[order(rowSums(d_data2BR)), ]), main = "Degree") 
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ev.mat <- matrix(NA, nrow(d_data2BR), nsim) 
for (i in 1:nsim) { 
  ev.mat[, i] <- sna::evcent(BRprob2[[i]]) 
} 
# show boxplot of eigenvector centrality sorted by the EV cent score in 
the 
# original similarity matrix 
boxplot(t(ev.mat[order(sna::evcent(d_data2BR)), ]), main = "Eigenvector
") 
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bw.mat <- matrix(NA, nrow(d_data2BR), nsim) 
for (i in 1:nsim) { 
  bw.mat[, i] <- sna::betweenness(BRprob2[[i]]) 
} 
# show boxplot of betweenness centrality sorted by the betweenness cent 
# score in the original similarity matrix 
boxplot(t(bw.mat[order(betweenness_w(d_data2BR)[, 2]), ]), main = "Betw
eenness") 

## Warning in as.tnet(net, type = "weighted one-mode tnet"): There were 
self-loops 
## in the edgelist, these were removed 
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# Run the script on the BR similarity matrix 
BRprob3 <- net.prob(d_data3BR) 
# set up matrix and calculate eigenvector centrality for every replicat
e 
dg.mat <- matrix(NA, nrow(d_data3BR), nsim) 
for (i in 1:nsim) { 
  dg.mat[, i] <- sna::degree(BRprob3[[i]]) 
} 
# show boxplot of degree centrality sorted by the degree cent score in 
the 
# original similarity matrix 
boxplot(t(dg.mat[order(rowSums(d_data3BR)), ]), main = "Degree") 
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ev.mat <- matrix(NA, nrow(d_data3BR), nsim) 
for (i in 1:nsim) { 
  ev.mat[, i] <- sna::evcent(BRprob3[[i]]) 
} 
# show boxplot of eigenvector centrality sorted by the EV cent score in 
the 
# original similarity matrix 
boxplot(t(ev.mat[order(sna::evcent(d_data3BR)), ]), main = "Eigenvector
") 
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bw.mat <- matrix(NA, nrow(d_data3BR), nsim) 
for (i in 1:nsim) { 
  bw.mat[, i] <- sna::betweenness(BRprob3[[i]]) 
} 
# show boxplot of betweenness centrality sorted by the betweenness cent 
# score in the original similarity matrix 
boxplot(t(bw.mat[order(betweenness_w(d_data3BR)[, 2]), ]), main = "Betw
eenness") 

## Warning in as.tnet(net, type = "weighted one-mode tnet"): There were 
self-loops 
## in the edgelist, these were removed 
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# Run the script on the X2 distance matrix 
Xprob <- net.prob(d_data1X01) 
# set up matrix and calculate eigenvector centrality for every replicat
e 
dg.mat <- matrix(NA, nrow(d_data1X01), nsim) 
for (i in 1:nsim) { 
  dg.mat[, i] <- sna::degree(Xprob[[i]]) 
} 
# show boxplot of degree centrality sorted by the degree cent score in 
the 
# original distance matrix 
boxplot(t(dg.mat[order(rowSums(d_data1X01)), ]), main = "Degree") 
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ev.mat <- matrix(NA, nrow(d_data1X01), nsim) 
for (i in 1:nsim) { 
  ev.mat[, i] <- sna::evcent(Xprob[[i]]) 
} 
# show boxplot of eigenvector centrality sorted by the EV cent score in 
the 
# original distance matrix 
boxplot(t(ev.mat[order(sna::evcent(d_data1X01)), ]), main = "Eigenvecto
r") 
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bw.mat <- matrix(NA, nrow(d_data1X01), nsim) 
for (i in 1:nsim) { 
  bw.mat[, i] <- sna::betweenness(Xprob[[i]]) 
} 
# show boxplot of betweenness centrality sorted by the betweenness cent 
# score in the original distance matrix 
boxplot(t(bw.mat[order(betweenness_w(d_data1X01)[, 2]), ]), main = "Bet
weenness") 
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# Run the script on the X2 distance matrix 
Xprob2 <- net.prob(d_data2X01) 
# set up matrix and calculate eigenvector centrality for every replicat
e 
dg.mat <- matrix(NA, nrow(d_data2X01), nsim) 
for (i in 1:nsim) { 
  dg.mat[, i] <- sna::degree(Xprob2[[i]]) 
} 
# show boxplot of degree centrality sorted by the degree cent score in 
the original distance matrix 
boxplot(t(dg.mat[order(rowSums(d_data2X01)), ]), main = "Degree") 
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ev.mat <- matrix(NA, nrow(d_data2X01), nsim) 
for (i in 1:nsim) { 
  ev.mat[, i] <- sna::evcent(Xprob2[[i]]) 
} 
# show boxplot of eigenvector centrality sorted by the EV cent score in 
the 
# original distance matrix 
boxplot(t(ev.mat[order(sna::evcent(d_data2X01)), ]), main = "Eigenvecto
r") 
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bw.mat <- matrix(NA, nrow(d_data2X01), nsim) 
for (i in 1:nsim) { 
  bw.mat[, i] <- sna::betweenness(Xprob2[[i]]) 
} 
# show boxplot of betweenness centrality sorted by the betweenness cent 
# score in the original distance matrix 
boxplot(t(bw.mat[order(betweenness_w(d_data2X01)[, 2]), ]), main = "Bet
weenness") 



 

340 

 

 

# Run the script on the X2 distance matrix 
Xprob3 <- net.prob(d_data3X01) 
# set up matrix and calculate eigenvector centrality for every replicat
e 
dg.mat <- matrix(NA, nrow(d_data3X01), nsim) 
for (i in 1:nsim) { 
  dg.mat[, i] <- sna::degree(Xprob3[[i]]) 
} 
# show boxplot of degree centrality sorted by the degree cent score in 
the 
# original distance matrix 
boxplot(t(dg.mat[order(rowSums(d_data3X01)), ]), main = "Degree") 
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ev.mat <- matrix(NA, nrow(d_data3X01), nsim) 
for (i in 1:nsim) { 
  ev.mat[, i] <- sna::evcent(Xprob3[[i]]) 
} 
# show boxplot of eigenvector centrality sorted by the EV cent score in 
the 
# original distance matrix 
boxplot(t(ev.mat[order(sna::evcent(d_data3X01)), ]), main = "Eigenvecto
r") 
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bw.mat <- matrix(NA, nrow(d_data3X01), nsim) 
for (i in 1:nsim) { 
  bw.mat[, i] <- sna::betweenness(Xprob3[[i]]) 
} 
# show boxplot of betweenness centrality sorted by the betweenness cent 
# score in the original distance matrix 
boxplot(t(bw.mat[order(betweenness_w(d_data3X01)[, 2]), ]), main = "Bet
weenness") 
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Appendix F:  Supplemental Data for Chapter 8 

 

Supplemental Code: Bayesian Accumulation Model for G134 (coded in R v. 4.0.2). 

##Code to produce an age-depth Bayesian estimate from 14C datapoints 
library(rbacon) 
 
Bacon( 
  "G134", 
  coredir = "Bacon_runs", 
  prob = 0.95, 
  d.min = 0, 
  d.max = 170, #can change the maximum if we want to estimate deeper layers 
  d.by = 1, 
  depth.unit = "cm", 
  age.unit = "yr", 
  unit = depth.unit, 
  acc.shape = 1.5, 
  acc.mean = 2, #value was tested and changed according to program prior 
estimates 
  mem.strength = 10, 
  mem.mean = 0.5, 
  boundary = NA, 
  hiatus.depths = c(130, 140, 150), #inferred hiatuses from excavations 
  hiatus.max = 100, 
  add = c(), 
  after = 1e-04/5, #5 is actually the thick value 
  cc = 3, #sets calibration to SHCal20 
  ccdir = "", 
  postbomb = 0, 
  t.a = 3, 
  t.b = 4, 
  normal = FALSE, 
  suggest = TRUE, 
  accept.suggestions = FALSE, 
  reswarn = c(10, 200), 
  remember = TRUE, 
  ask = TRUE, 
  run = TRUE, 
  defaults = "defaultBacon_settings.txt", 
  sep = ",", 
  dec = ".", 
  runname = "", #can update this to give each output specific file name 
  slump = c(), 
  remove = FALSE, 
  BCAD = FALSE, 
  ssize = 2000, 
  th0 = c(), 
  burnin = min(500, 2000), #2000 = ssize 
  MinAge = c(), 
  MaxAge = c(), 
  MinYr = MinAge, 
  MaxYr = MaxAge, 
  cutoff = 0.01, 
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  plot.pdf = TRUE, 
  dark = 1, 
  date.res = 100, 
  age.res = 200, 
  yr.res = age.res, 
  close.connections = TRUE, 
  verbose = TRUE 
  ) 
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Supplemental Figures and Tables 

 

 

Supplemental Figure F-1: Bayesian age depth estimation model of G134 using only 
class 1 and class 2 14C dates. See caption of Figure 4 for details on each plot. Age 
estimations are comparable with the model shown in Figure 4. Star and associated 
histogram show depth and age-depth estimation for the lithic recovered from the unit 
[mean (red): 975 cal. BP, median (green): 970 cal. BP, 95% range (blue): 728.-1233 cal. 
BP].  

 

Supplemental Figure F-2: Count of marine shell material recovered from G123 Unit 1. 
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Supplemental Figure F-3: Count of marine shell material recovered from G123 Unit 2. 

 

Supplemental Figure F-4: Count of marine shell materials recovered from G123 Unit 3. 
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Supplemental Figure F-5: Count of marine shell material recovered from G-15-2020 by 
stratigraphic level. 
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Supplemental Table F-1: Charcoal Samples and their chronometric hygiene ranks and 
associations. 

Sample ID 
Depth 
(cm) 

Cultural Context 
Material 

Type 
Rank 

Association 
Rank 

14C 
Rank 

Hygiene 
Class 

AMP1 8 Artifacts 2 1 1 2 

AMP2 26 Artifacts (faunal, ceramic) 2 1 2 3 

AMP3 27 Artifacts (faunal, ceramic) 2 1 2 3 

G123-1 14 Artifacts (Marine shell) 2 1 2 3 

G123-2 16 Artifacts (Marine shell) 2 1 2 3 

G123-3 22 Artifacts (Marine shell) 2 1 2 3 

G123-4 16.5 Artifacts (Marine shell) 2 1 1 2 

G123-5 20 Artifacts (Marine shell) 2 1 1 2 

BELA1 13 Artifacts (faunal, ceramic) 2 1 1 2 

BELA2 20 Artifacts (faunal, ceramic) 2 1 1 2 

BELA3 18 
Artifacts (Marine shell 

and eggshell) 
2 1 1 2 

BELA4 21 Artifacts (faunal, ceramic) 2 1 2 3 

BELA5 20 Artifacts (faunal, ceramic) 2 1 1 2 

G134-1 21 Artifacts (ceramic) 2 1 2 3 

G134-2 20 Artifacts (ceramic) 2 1 2 3 

G134-3 19 Artifacts (ceramic) 2 1 2 3 

G134-4 34 
Artifacts (marine shell 

ceramic) 
2 2 2 3 

G134-5 38 Artifacts (faunal) 2 1 2 3 

G134-6 38 Artifacts (faunal) 2 1 2 3 

G134-7 43 Artifacts (faunal) 2 1 2 3 

G134-8 40 Artifacts (faunal) 2 1 2 3 

G134-10 43.5 Artifacts (faunal) 1 1 1 1 

G134-11 47 Artifacts (faunal) 2 1 1 2 

G134-13 50 Artifacts (faunal, metal) 1 1 2 2 

G134-14 50 Artifacts (faunal, metal) 1 1 2 2 

G134-F1-1 57 Feature 2 1 2 3 

G134-F2-1 65 Feature 1 1 2 2 

G134-15 68 Artifacts (faunal, ceramic) 1 1 2 2 

G134-16 66 Artifacts (faunal, ceramic) 2 1 2 3 

G134-17 68 Artifacts (faunal, ceramic) 2 1 2 3 

G134-18 68 Artifacts (faunal, ceramic) 2 1 2 3 

G134-19 68 Artifacts (faunal, ceramic) 2 1 2 3 

G134-20 69 Artifacts (faunal, ceramic) 1 1 1 1 

G134-23 71 Artifacts (faunal, ceramic) 1 1 2 2 

G134-24 71 Artifacts (faunal, ceramic) 2 1 2 3 

G134-26 73.5 Artifacts (faunal) 2 1 2 3 

G134-27 76 Artifacts (faunal, ceramic) 1 1 2 2 



 

350 

 

G134-28 72 Artifacts (faunal) 1 1 2 2 

G134-30 82 Artifacts (faunal, ceramic) 2 1 2 3 

G134-31 82 Artifacts (faunal, ceramic) 1 1 1 1 

G134-32 77 Artifacts (faunal) 2 1 2 3 

G134-33 79 Artifacts (faunal, ceramic) 2 1 2 3 

G134-34 78 Artifacts (faunal, ceramic) 2 1 1 2 

G134-35 84 Artifacts (faunal) 2 1 2 3 

G134-36 82 Artifacts (faunal, ceramic) 2 1 1 2 

G134-37 85 Artifacts (faunal, ceramic) 2 1 1 2 

G134-38 81 Artifacts (faunal, ceramic) 2 1 2 3 

G134-39 90 Artifacts (faunal, ceramic) 2 1 2 3 

G134-40 90 Artifacts (faunal, ceramic) 2 1 2 3 

G134-41 92 Artifacts (faunal, ceramic) 2 1 1 2 

G134-42 89 Artifacts (faunal, ceramic) 1 1 2 2 

G134-43 96 
Artifacts (faunal, ceramic, 

metal) 
1 1 1 1 

G134-44 87 Artifact (ceramic) 1 1 2 1 

G134-45 96 
Artifacts (faunal, 
ceramics, metal) 

2 1 1 2 

G134-46 109 Artifacts (faunal, ceramic) 2 1   

G134-47 110 Artifacts (faunal, ceramic) 2 1 1 2 

G134-48 115 Artifacts (faunal, ceramic) 2 1 1 2 

G134-49 129 Artifacts (ceramic) 2 1 1 2 

G134-50 144 Artifacts (faunal, ceramic) 2 1 1 2 
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