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ABSTRACT
Automated remote sensing has made substantial breakthroughs for archaeological 
investigation. Over the past 20 years, the reliability of these methods has vastly 
improved, and the total number of practitioners has been increasing. Nonetheless, 
much of the work conducted, to date, focuses almost exclusively on specific topographic 
features and monumental architecture, ignoring the potential of automation to 
readily assess more ephemeral components of the archaeological record. Likewise, 
the emphasis on specific feature types overlooks broader landscape patterns, thus 
delegating automated remote sensing analysis as a method in and of itself, mostly 
disconnected from larger archaeological and anthropological investigations. Here, 
I review recent attempts to rectify this shortcoming by using automated analysis 
methods to record and explain ephemeral archaeological material distributions. 
While such research is limited, I argue that the successes achieved in these recent 
studies offer a pathway forward for automated remote sensing to become more fully 
integrated with archaeological work beyond the detection of specific topographically 
distinct features.
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INTRODUCTION

Remote sensing archaeology has a long history and 
improvements in sensing technologies and data 
analysis methods have greatly expanded our ability 
to record archaeological data (Adamopoulos and 
Rinaudo 2020; Lambers 2018; Luo et al. 2019; Osicki 
and Sjogren 2005; Verhoeven 2017). One of the most 
significant methodological advances in archaeological 
remote sensing, in recent years, has been the 
development of automated techniques for landscape-
level archaeological prospection (Davis 2019; Lambers, 
Verschoof-van der Vaart and Bourgeois 2019; Traviglia 
and Torsello 2017). In recent reviews of automated 
remote sensing in archaeology, a clear pattern emerges 
within the use of these methods, specifically an intense 
focus on the detection of individual features, oftentimes 
“monumental” constructions such as mound complexes, 
large-architectural features, or other topographically 
distinct remnants of human activity (e.g., charcoal kilns, 
craters of war, etc.) (e.g., Magnini, Bettineschi and De Guio 
2017; Schneider et al. 2015; Trier, Cowley and Waldeland 
2019; Wang et al. 2017).

While nearly all published case studies utilizing 
automated detection are focused on explicitly noticeable 
landscape modifications, such large-scale features do not 
comprise most of the archaeological record. Of course, 
there is a very good reason for why most archaeological 
applications of AI and automation are restricted to 
such types of features: they are distinct, unique from 
surrounding landscapes, and easy to detect. It is also 
important to note that with the continued struggle 
by researchers to limit false positive results within 
archaeology and heritage management, developing 
and refining automated techniques has required target 
features that are simpler to detect in terms of their 
morphology. In addition, the lack of high-resolution data 
until more recently made detecting anything else largely 
a dream rather than an achievable reality. Nonetheless, 
researchers have made great strides in automatically 
detecting cultural features from remotely sensed data, 
but research affixed to dominant landscape features 
can come at the expense of broader understandings 
of human occupancy and its connection to ecological 
conditions throughout the world (which remains poor in 
many regions, see Stephens et al. 2019).

Thus, a pivotal question for researchers focused on 
automated workflows for archaeological investigations 
is how useful this niche really is for archaeology if all 
we can do is locate the largest or most morphologically 
uniform displays of cultural activity? This echoes a 
recent sentiment of Palmer (2020, 26) who states that 
researchers “have been doing the same thing, maybe with 
different algorithms, for at least 10 years… Show me that 
[automated detection] works on those sites with ‘no shape’ 
and I’ll begin to believe [in these methods’ usefulness].”

With this sentiment in mind, a shift of automated 
remote sensing in archaeology beyond individual features 
to broader and more complex patterns of human activity, 
cultural niche construction, and landscape modification 
could greatly enhance the utility of these methods. If 
we begin to take the knowledge gained by previously 
successful efforts for automated archaeological 
prospection and refocus on a multi-scalar landscape 
perspective attuned to ephemeral archaeological 
deposits and broader patterns of landscape use (also see 
Doneus 2013; Traviglia and Torsello 2017), we may be 
able to greatly improve our understanding of the true 
impact that ancient populations had on landscapes.

Recently, there have been attempts to using machine 
learning for predictive modeling and the detection 
of subtle archaeological deposits with few – if any 
– structural remains. Some examples are “indirect” 
approaches (sensu Davis and Douglass 2020; Howey et 
al. 2020) for locating archaeological materials (e.g., Davis 
et al. 2020a), while others have successfully detected 
features like dung deposits and remnants of farming 
communities where no structures still stand (e.g., 
Thabeng et al., 2020; Thabeng, Merlo, & Adam, 2019). For 
these “direct” approaches for archaeological prospection, 
the use of multi- and hyper-spectral sensors at extremely 
high spatial resolutions was key to their success. While 
the use of spaceborne sensing for the detection of 
such archaeological deposits is still new, it offers an 
unparalleled ability to reconstruct past settlement 
patterns and landscape use on a vast geographic scale. 
Such advancements also offer unique opportunities to 
better integrate automated remote sensing methods 
into broader archaeological research agendas beyond 
prospection. In what follows, I review some of these 
recent applications and discuss the implications of such 
methodological breakthroughs on the advancement of 
anthropological and archaeological theory.

A BRIEF HISTORY OF AUTOMATION 
IN LANDSCAPE ARCHAEOLOGICAL 
REMOTE SENSING

Remote sensing archaeologists first began to experiment 
with automated methods of feature extraction about 
20–30 years ago with the development of object-based 
image analysis (OBIA) and statistical machine learning 
algorithms for image analysis (Davis 2019; Lambers and 
Traviglia 2016). However, when considering the use of 
remote sensing data for the creation of archaeological 
predictive models, the use of semi-automated remote 
sensing within archaeology expands several decades 
earlier (e.g., Custer et al. 1986; Drager 1983; Findlow and 
Confeld 1980; Jones 1979; Madry and Crumley 1990).

Landscape classification has long been a staple of 
remote sensing analysis, and archaeologists have used 
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such methods for the purpose of exploring settlement 
patterns and expediting survey projects since the 1980s 
(e.g., Custer et al., 1986); such methods continue to 
persist today (e.g., Abate et al. 2020; Davis et al. 2020a; 
Kirk, Thompson and Lippitt 2016; Klehm et al. 2019). 
Automated methods for direct feature extraction begin 
in the mid-1990s (Lemmens, Stančić and Verwaal 1993; 
also see Lambers and Traviglia 2016), at which point 
there is a gap in publications until the early 21st century, 
at which point the use of mathematical algorithms 
begin to gain prominence in locating ancient Roman 
roadways and mounded architecture in aerial imagery 
(Bescoby 2006; Menze, Ur and Sherratt 2006). From 
this point, dozens of case studies assessing various 
methods were published trying to maximize ways of 
accurately extracting information relevant for cultural 
heritage management from remotely sensed data 
(e.g., De Laet, Paulissen and Waelkens 2007; Jahjah et 
al. 2007; Magnini, Bettineschi and De Guio 2017; Sevara 
et al. 2016; Trier, Larsen and Solberg 2009). While some 
researchers achieved remarkably accurate results (e.g., 
Caspari and Crespo 2019; Guyot, Hubert-Moy and Lorho 
2018), many struggled with issues of false positive and 
negative errors, leading some researchers to question 
the efficacy of such methods for archaeological work 
(e.g., Casana 2014; Hanson 2010; Parcak 2009). With the 
advent of deep learning models (a branch of machine 
learning), specifically those based on convolutional 
neural networks (CNNs) – a model architecture that 
makes use of multidirectional data analysis for pattern 
recognition – the issue of accuracy is beginning to 
diminish, but challenges still remain (e.g., Bonhage et 
al. 2021; Caspari and Crespo 2019; Garcia-Molsosa et al. 
2021; Somrak, Džeroski and Kokalj 2020; Soroush et al. 

2020; Trier, Cowley and Waldeland 2019; Verschoof-van 
der Vaart and Lambers 2019).

Today, there are fewer pushbacks against automation 
for remote sensing analysis in archaeology (cf. Palmer 
2020), as these methods have greatly improved in 
their reliability. Nonetheless, the standard formula 
for such studies is simply to develop a method and 
report results, but never really mention the function of 
such methodological advances in the face of broader 
archaeological questions (Davis 2019; Davis and 
Douglass 2020). Furthermore, many automated remote 
sensing archaeological case studies focus exclusively 
on monumental architecture (e.g., mounds, tombs, 
medieval castles, roadway systems, palaces and urban 
complexes) or topographically distinct features like 
charcoal kilns and burning pits (e.g., Bonhage et al. 2021; 
Caspari and Crespo 2019; Davis, Sanger and Lipo 2019; 
Guyot, Hubert-Moy and Lorho 2018; Masini et al. 2018; 
Schneider et al. 2015; Somrak, Džeroski and Kokalj 2020; 
Trier, Reksten and Løseth 2021). Ultimately, these foci 
limit the inherent utility of automated approaches to 
archaeological remote sensing, as this research leaves 
little direct impact on archaeological inquiry, but rather 
stays within a niche methodological focus within remote 
sensing analysis (Figure 1). By expanding the use of 
automated remote sensing to greater portions of the 
archaeological record, these tools have the potential 
to become more fully integrated into archaeological 
research focused on a myriad of important questions.

While a great deal of space can be taken to discuss 
the many advances of automated methods in 
archaeology, as others have recently done (see Davis 
2019; Lambers, Verschoof-van der Vaart and Bourgeois 
2019; Traviglia and Torsello 2017), I will focus exclusively 

Figure 1 Illustration of how automated methods have integrated within archaeological research. A: Current state of automated 
remote sensing archaeology, where automation makes many methodological contributions to remote sensing, but few direct 
benefits to archaeological research more generally. B: Proposed future of automated approaches in remote sensing archaeology, 
wherein automated techniques play direct roles in larger archaeological research projects beyond merely technical advances to 
remote sensing analysis.
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on a select subset of applications of machine learning 
and automation that have received far less attention: the 
prospection of ephemeral archaeological remains.

A SHIFT TOWARDS THE EPHEMERAL

Archaeological research has long been challenged by 
taphonomic processes (Schiffer 1983; Schiffer, Sullivan 
and Klinger 1978; Schon 2002), and even among remote 
sensing archaeologists this problem has been noted in 
the strive towards improving automated archaeological 
analyses (see Magnini and Bettineschi 2019). The loss of 
history to the sands of time is a problem not easily solved, 
and the degradation of many traces of past human 
activity has long limited our understanding of the earliest 
human societies. For example, foraging societies, whose 
archaeological traces are often more discrete when 
compared with agropastoral or industrial populations, 
make up some of the least well-documented and 
understood archaeological cultures from a landscape 
perspective (see Stephens et al. 2019).

AUTOMATION AND SEMANTIC CONSISTENCY
In many ways, issues of taphonomy (e.g., multifinality 
and equifinality) are not circumventable by any suite of 
methods. However, we can rethink how to use the tools 
at our disposal to improve our capacity to recognize those 
sites that are disappearing (Magnini and Bettineschi 
2019). This issue is discussed at length by Magnini 
and Bettineschi (2019), who discuss the implications 
of depositional processes on the characteristics 
of archaeological materials (i.e., equifinality and 
multifinality). The authors state that:

…having a clear picture of how an ancient context 
should have looked like is not enough. One 
needs to be aware of the possible modifications 
that occurred during the millennia to develop 
an efficient conceptualized model that can be 
translated in machine language and used to 
maximize the results of a semi-automatic image 
analysis (Magnini and Bettineschi 2019: 13).

Magnini and Bettineschi (2019) propose the use of 
Diachronic Semantic Models (DhSMs) to help address 
questions about the evolution of archaeological materials 
in the face of taphonomic activities. In brief terms, 
DhSMs are a type of ontological system (sensu Guarino 
et al., 2009), meaning that it constitutes a formalized 
model by which we can conceptualize the archaeological 
record in its many forms. There are numerous sources 
of bias that can affect data collection and the results of 
different research agendas, and formalized conceptual 
frameworks can aid in replicability of research and 
interoperability of datasets (Nuninger et al. 2020a, 

2020b). DhSMs are one form of formalized conceptual 
framework that are designed to create a link between 
theoretical notions of taphonomic effects and digital 
representations of these materials in remote sensing 
data (Magnini and Bettineschi 2019; also see Arvor 
et al. 2019). By formalizing our expectations of what 
modifications may have taken place to cultural materials, 
we can improve our capacity to predict and identify these 
features within the modern landscape, as it widens our 
expectations of the form that these materials may 
take given changes over time. The same has recently 
been advocated by Nuninger et al. (2020a, 2020b), 
who develop conceptual frameworks for identifying and 
tracing movement via “pathways” in the archaeological 
record. By formalizing our conceptions of these cultural 
phenomena, it allows for researchers to improve their 
interpretations of archaeological data by rethinking 
the scales at which they investigate certain concepts. 
As I explain below, such conceptualizations are key for 
improving automated archaeological remote sensing 
methods and broadening their impact to archaeology by 
situating these approaches within explicit archaeological 
theoretical frameworks.

Uncovering more ephemeral traces of human 
activities is challenging because the nature of habitat 
modifications and material remains – often consisting 
of temporary or semi-permanent living structures that 
decay shortly after abandonment – are far more subtle 
when compared with cultural features like monuments. 
The long-term effects of depositional processes will 
ultimately reduce such materials into microscale traces 
that require a multitude of different analytical methods 
to perceive (Davis, Seeber and Sanger 2020). However, 
recent successes of automated remote sensing bring a 
suite of advantages to documenting land-use practices 
in a systematic and replicable manner, and recently this 
has included the identification of ephemeral land-use 
activities (Davis et al. 2020a; Orengo and Garcia-Molsosa 
2019; Thabeng, Merlo and Adam 2019, 2020).

MACHINE LEARNING AND THE DIRECT 
DETECTION OF NON-STRUCTURAL 
ARCHAEOLOGICAL ELEMENTS
One key example of how automated remote sensing 
analysis is beginning to allow for the direct documentation 
of ephemeral archaeological sites is through machine 
learning and UAV imagery. Orengo and Garcia-Molsosa 
(2019) demonstrate how drone images can be flown 
on paths conforming to traditional survey transects to 
record artifact scatters commonly associated with most 
archaeological surface investigations. They demonstrate 
how UAV survey can vastly outperform pedestrian 
survey strategies and even generate more accurate 
artifact counts in areas with vegetative obstructions. 
However, this method is extremely new, and suffers 
several setbacks including: computational cost, a 
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steep learning curve to implement, and the impact of 
light, shadow, and environmental surface conditions 
on results. Nevertheless, the study is promising for the 
future development of reliable methods of conducting 
artifact-level identification using aerial remote sensing 
instruments.

Another example of automated remote sensing 
analysis for the detection of ephemeral, complex, and 
degrading archaeological remains is the use of deep 
learning models to detect traces of sunken cart-tracks 
from the post-Medieval period in the Netherlands 
(Verschoof-van der Vaart and Landauer 2020). As the 
authors of this study note, archaeological research 
using deep learning (e.g., convolutional neural networks 
[CNNs]) and other automated approaches have done 
very little to investigate complex, large-scale landscape 
components (e.g., roadways). Using LiDAR data and 
a new deep learning model architecture, Verschoof-
van der Vaart and Landauer (2020) manage to capture 
a broad network of roadways with promising levels 
of precision and accuracy. Nevertheless, issues of 
misclassification are pervasive, as these roadways are 
often damaged, overlaid with newer streets, and are, 
overall, much more difficult to discern from other, more 
pronounced features. The authors also point out that 
while model performance issues are present, the results 
of such automated analyses will permit for a more 
comprehensive understanding of transport networks in 
the post-Medieval period. Furthermore, it will improve 
chronological information pertaining to the connectivity 
of people and places throughout this landscape.

Researchers are also demonstrating how very-
high-resolution satellite imagery can be used to record 
archaeological features typically overlooked by traditional 
landscape surveys (e.g., Klehm et al. 2019) or otherwise 
ephemeral archaeological deposits. Thabeng, Merlo, and 
Adam (2019) use WorldView-2 satellite imagery from 
Maxar (formerly DigitalGlobe) to locate dung deposits 
associated with archaeological farming communities in 
Botswana. Remains of animal stables within this region 
can be characterized by the presence of dung piles. The 
researchers use WorldView-2 – which has 1.84 m spatial 
resolution multispectral data and 0.46 m resolution 
panchromatic data – in conjunction with random-
forest (RF) and support-vector machine (SVM) classifiers 
to successfully detect these dung piles. Overall, they 
achieve ~95% accuracy and successfully reidentify ~300 
archaeological sites, despite very few surface indicators 
of archaeological activities.

Thabeng and colleagues further explore the 
possibilities of detecting these ancient farming sites 
using hyperspectral analysis (Thabeng et al., 2020; 
Thabeng, Adam, & Merlo, 2019). They find that collecting 
hyperspectral measurements of archaeological 
deposits on the ground can be used to train machine 
learning algorithms to directly detect these features in 

satellites, even those with coarser spatial resolutions 
(e.g., Sentinel-2, Landsat, etc.). While such feats require 
extensive fieldwork and laboratory analysis, it is extremely 
promising for the expansion of survey operations using 
automated procedures. Furthermore, the ability to detect 
subtle archaeological deposits in freely available satellite 
imagery is particularly significant for researchers without 
access to large pools of funding.

PREDICTIVE MODELING AND THE INDIRECT 
DETECTION OF EPHEMERAL ARCHAEOLOGICAL 
DEPOSITS
In this light, work recently conducted on Madagascar is 
demonstrating how freely available medium-resolution 
satellite imagery can be used to accurately predict 
the locations of ephemeral remnants of Holocene era 
foraging camps (Davis et al. 2020a). Using Sentinel-2 
data – which is freely available from the European 
Space Agency – and SVM classifiers, the team identified 
culturally significant environmental resources across 
a 1400km2 area of the island’s southwest coast. Using 
these data, the researchers created a predictive model 
that operated under the theoretical assumptions of an 
ideal free distribution (IFD, Fretwell and Lucas 1969). 
IFD is a settlement model from population ecology that 
suggests populations – without any restrictions – will 
choose to settle areas with the best access to important 
natural resources. The results of this analysis successfully 
identified archaeological sites consisting of ephemeral 
artifact scatters with over 80% accuracy, while 
simultaneously adding to archaeological knowledge 
about the nature of settlement distributions in this region 
over the past several thousand years. Follow-up analyses 
further improved the model using spatial statistical 
modeling (Davis, DiNapoli and Douglass 2020).

While there are many instances of similar forms of 
predictive modeling in archaeology (e.g., Borie et al. 
2019; Sonnemann et al. 2017), the explicit framing 
of the model in theoretical terms is significant for 
advancing archaeological remote sensing. Despite low 
data resolution and vegetative cover throughout much 
of the study region, Davis and colleagues (2020a) were 
able to reliably locate ephemeral archaeological deposits 
in record time compared with traditional ground-based 
survey approaches. Furthermore, the results of these 
projects led to the collection of enough training data 
to begin testing machine learning algorithms for the 
direct detection of these foraging sites (see Davis and 
Douglass In Review). The results of this continuing work 
are promising with accuracy metrics exceeding 90% and 
providing archaeologists with the ability to quantify extant 
human niche construction and its ecological legacies.

DETECTION OF EPHEMERAL SITES BY PROXY
Apart from these examples, there are some 
researchers who have focused on the reconstruction 
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of palaeoecological features (i.e., palaeorivers, lakes, 
streams, etc.), which in turn can help to pinpoint the 
locations of early archaeological sites. For example, 
researchers working in the Arabian Peninsula used a 
variety of hydrological algorithms and automation 
procedures to locate palaeohydrological features. 
Subsequently, these features acted as a proxy for 
Paleolithic archaeological sites, which successfully 
identified 19 new archaeological deposits (Breeze et al. 
2015). Similarly, Elfadaly et al. (2020) used amplitude 
radar imagery to locate palaeorivers and drainage 
systems in the Mediterranean region, which in turn 
provides important insight to the placement of early 
Neolithic archaeological sites. While this study was not 
automated, it demonstrates the potential for using 
automated methods to locate non-archaeological 
features that act as proxies for early human settlements.

One of the most significant and widespread detection 
efforts by proxy involves vegetative signatures (e.g., 
Agapiou 2020; Bennett et al. 2012; Brooks and Johannes 
1990; Lasaponara and Masini 2007). It has been 
well established that buried archaeological remains 
tend to affect plant health and growth patterns, and 
in some instances even change the kinds of plants 
that occupy areas with associated cultural contexts 
(Brophy and Cowley 2005; Verhoeven 2012; Wilson 
1975). With the advent of mathematical metrics of 
quantifying vegetation, the use of vegetative indices for 
archaeological prospection efforts has been a staple of 
semi-automated analyses for decades (see Bennett et 
al. 2012). Indeed, such vegetative proxies have been 
incorporated into many predictive modeling efforts to 
locate archaeological sites (e.g., Agapiou 2020; Calleja 
et al. 2018; Davis et al. 2020a; Hegyi et al. 2020; Kirk, 
Thompson and Lippitt 2016; Yaworsky and Codding 
2018). In several instances, vegetative indices have 
been used in conjunction with other automated remote 
sensing methods (e.g., Davis et al. 2020a; Kirk, Thompson 
and Lippitt 2016; Yaworsky et al. 2020).

Despite the successes of studies like those discussed 
in this section, the vast majority of automation within 
archaeological remote sensing continues to utilize the 
most novel methodologies (e.g., machine learning 
and deep learning) but focus on the same types of 
large, topographically distinct archaeological objects 
(e.g., Orengo et al. 2020; Sărăs

̓
an et al. 2020; Somrak, 

Džeroski and Kokalj 2020; Soroush et al. 2020; Trier, 
Reksten and Løseth 2021). These efforts are important 
and worthwhile, but so too is broadening the range of 
questions that can be assessed by such techniques. 
Using remotely sensed data as proxies for archaeological 
prospection can aid researchers not only in locating 
ephemeral archaeological traces (Figure 2), but also in 
linking these studies back to broader archaeological 
research questions. The concept of archaeological 
landscapes as a palimpsest (as illustrated in Figure 2) is 

a fundamental tenet in the development of landscape 
archaeology as a holistic archaeological discipline. In 
this context, remote sensing approaches, in combination 
with other datasets from geology, demography, history, 
and anthropology provide long-term observations of 
both visible and ephemeral anthropogenic features.

THE CASE FOR THEORETICAL 
INTEGRATION AND EXPANSION 
WITHIN AUTOMATED REMOTE 
SENSING ANALYSIS

As the previous section highlights, automated remote 
sensing analyses are beginning to make breakthroughs 
in documenting subtle traces of the archaeological 
record that are often overlooked in landscape-scale 
research. This, in turn, can help to advance archaeological 
theory, but all too often direct linkages to theoretical 
frameworks are absent from automated remote sensing 
approaches (Davis and Douglass 2020; Thompson et al. 
2011). When the data used is of high enough resolution 
it is tempting to simply detect whatever objects 
can be found, irrespective of broader archaeological 
frameworks. However, when data is too coarse for such 
“direct” detection approaches, or the procurement of an 
unbounded dataset is too costly, theory is invaluable for 
framing methods of analysis (e.g., Davis et al. 2020a).

Indeed, the detection of ephemeral archaeological 
sites has been aided by predictive modeling efforts based 
on environmental information procured from medium-
to-coarse-grained satellite imagery. For example, 
Custer et al. (1986) use Landsat satellite imagery and 
statistical machine learning to classify environmental 
landscape types to determine the greatest likelihood 
for archaeological site locations. While this method is 
most explicitly rooted in statistical theory, the predictive 
modeling approach itself is entrenched in cultural 
ecology approaches that have been part of standard 
archaeological frameworks for nearly a century (Butzer 
1982; Steward 1937, 1955). Very similar approaches 
persist in archaeology today, many of which rely on at 
least some remotely sensed environmental information 
(e.g., Davis, DiNapoli and Douglass 2020; Verhagen and 
Whitley 2012; Yaworsky et al. 2020).

Perhaps the greatest theoretical advancement offered 
by the methods discussed here is the reformulation 
of “site”-based archaeological studies. For decades, 
researchers have challenged the usefulness of the 
archaeological unit of “site” and its role in archaeological 
investigations (Caraher, Nakassis and Pettegrew 2006; 
Dunnell 1992; Dunnell and Dancey 1983; McCoy 2020). 
Particularly with the rise of geospatial technologies 
like remote sensing, the “site” concept has been vastly 
complicated by new levels of resolution and scale (McCoy 
2020: S24; also see Czajlik et al. 2021). Alternatives 
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to “site” based investigation have been proposed 
and include “siteless” surveys (Dunnell and Dancey 
1983), landscape surveys, which, rather than assess 
the archaeological record as a collection of individual 
“sites”, views it as a connected system of different parts 
(Anschuetz, Wilhusen and Scheick 2001), and in temporal 
terms (coined time perspectivism [Bailey 1981, 2008]), 
which view the archaeological record as a palimpsest 
without dissected components. With an ability to record 
archaeological components at multiple scales and at 
varying levels of resolution, how we think about and 
categorize archaeological data requires reformulation. 
As researchers have argued, it is vital that the term “site” 
is understood as a result of archaeological observation, 
and not anything inherent in how things actually are; 
in other words, we find sites, but sites are not what we 
actively seek out (Dunnell 1992; McCoy 2020).

As remote sensing studies shift towards 
documentation of artifacts and anthropogenic niche 
construction at finer scales, the very nature of remotely 
detected archaeological data will require adjustment, 

as “sites” are no longer an adequate descriptor of 
the results of these investigations. Rather, remote 
sensing archaeology can record – to varying degrees of 
completeness – the very palimpsests and interconnected 
systems that define the record according to landscape 
and time perspectivist approaches. Take, for example, 
recent work utilizing multitemporal image analysis (e.g., 
Lasaponara, Abate and Masini 2021; Orengo et al. 2020) 
which takes time-series averages of remote sensing 
imagery to establish atemporal geophysical profiles 
of features of interest. In this case, a large portion of 
time is used to establish a general set of characteristics 
by which archaeological and anthropogenic activities 
exist relative to other elements within that geographic 
space (like a time perspectivist approach [sensu Bailey 
1981]). Similarly, landscape theoretical perspectives are 
encapsulated by remote sensing instruments whereby 
individual features and “sites” are defined in terms of their 
similarity or difference from surrounding regions based 
on spectral signature, physical or chemical composition, 
or orientation within a landscape of connected features.

Figure 2 Over time, the degree of landscape modification has increased (purple dotted-line). The modern landscape, which is 
directly detectable (highlighted in green) by satellite remote sensing, represents a palimpsest of collective human actions, which 
are each detectable in different ways and to varying degrees. Modern modifications and some older landscape modifications can 
be directly identified, while other older and subtler activities that leave fewer direct traces can be identified by proxy (highlighted 
in yellow), wherein we can infer the timing of different changes seen in the present by linking visible differences to known areas of 
historic/archaeological human presence (red dashed-arrows).
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Another important contribution of automated remote 
sensing techniques is the capability of characterizing 
the archaeological record in a uniform and semantically 
consistent manner (Davis 2020), alleviating one of 
the major problems with the “site” concept. As McCoy 
(2020) argues, remotely sensed archaeological data 
may require new and distinct definitions from traditional 
“site” based categories. At the same time, it is important 
not to distance remotely sensed and ground-based 
data as fundamentally different or incompatible with 
one another, as this deepens an epistemological divide 
among researchers with respect to the connection of 
different data sources to their human roots (Hacıgüzeller 
2012; Millican 2012; Thomas 1993).

While not all scholars will agree on the best theoretical 
approach, remote sensing data can be incorporated 
into many studies rooted in very different theoretical 
positions. For example, researchers have used remotely 
sensed data to assess social questions concerning 
changes in landscape use (e.g., Chase, Chase and Chase 
2017; Inomata et al. 2018; Vining 2018), mobility and 
connectivity (e.g., Oltean and Fonte 2021; Pawlowicz 
2020), socio-political boundaries (e.g., Evans et al. 2013; 
Harrower and D’Andrea 2014; Inomata et al. 2020), 
and perceptions and experiences of place (e.g., Fitzjohn 
2007; Millican 2012), among others. While not all these 
approaches necessarily rely on (or require) automated 
remote sensing analysis, many – if not all – of these 
questions can benefit from automated remote sensing 
studies – specifically in the use of data generated by 
such endeavors. For example, Cerrillo-Cuenca and Bueno‐

Ramírez (2019) use data collected via automated remote 
sensing analysis by Cerrillo-Cuenca (2017) to explore the 
differences in land-use and monument distribution in the 
Iberian Peninsula. This study revealed new connections 
between different kinds of archaeological features, 
indicating a vast landscape of human activity – even in 
so-called “marginal” locations where prior research had 
discovered very few archaeological materials. While this 
example focuses on monumental sites, the same can 
be shown in cases of ephemeral archaeological patterns 
discussed above.

In addition to the interpretive advantages of theoretical 
integration, the incorporation of archaeological theory 
into automated research can also help alleviate the 
problem posed by taphonomic processes mentioned 
earlier. By formalizing our expectations of what 
modifications to cultural materials may have taken place 
using ontological systems (see Arvor et al. 2019; Magnini 
and Bettineschi 2019), we can improve our capacity to 
predict and identify these features within the modern 
landscape, as it widens our expectations of the form that 
these materials may take given changes over time.

Such evolutionary perspectives of the archaeological 
record are well established, and in relating such theoretical 
knowledge directly into automated remote sensing 

analysis, we can improve the utility of these approaches, 
as well as their overall impact on archaeological thought. 
For example, niche construction theory (NCT) – a branch 
of evolutionary biology – postulates that ecological 
modifications made by individual organisms result in 
subsequent environmental changes that impact other 
cohabitating organisms (Laland and O’Brien 2010; 
Odling-Smee, Laland and Feldman 2003). The line of 
thought associated with NCT goes well with Magnini 
and Bettineschi’s (2019) concept of DhSMs discussed 
previously, as the assumptions of NCT can create 
hypotheses surrounding the long-term ecological effects 
of human activity. This, in turn, can inform researchers 
of possible proxies by which archaeological materials 
can be identified. In practice, new research is already 
demonstrating the potential of such an approach for 
documenting ephemeral foraging sites via satellite 
remote sensing (Davis and Douglass In Review; also see 
Vining 2018; Czajlik et al. 2021).

While I advocate for the linkage of archaeological 
remote sensing with explicit archaeological theory, it is 
obvious that such a methodological-theoretical marriage 
is not always warranted depending upon one’s research 
goals. All research is based on some set of theoretical 
assumptions, and automated remote sensing is no 
exception: it is tightly intertwined in information theory, 
statistical and mathematical theory, and geophysical 
theory, among others. However, the issue that arises 
when archaeological theory is left out is the delegation 
of all such methodological achievements as simply a 
technical report within archaeological literature.

According to a Web of Science search (see 
Supplemental Materials), automated archaeology 
research is primarily cited by articles in geoscience and 
remote sensing journals, followed by interdisciplinary 
publications and archaeological science publications 
(Figure 3). Medical journals, such as Statistics in Medicine 
and International Journal of Environmental Research 
and Public Health were unexpected sources of citations, 
and such publications appear primarily concerned with 
spatial modeling of disease transmission. Further work 
would be needed to evaluate these trends fully, but this 
goes beyond the scope of this article.

When evaluating the publications that reference 
automated remote sensing studies (see Supplementary 
Materials for more details), the bulk of these citations 
appear to be methodologically focused where direct 
contributions to archaeological theoretical questions 
are of secondary importance, if mentioned at all 
(Supplementary Materials; Table S1). While many 
methodological studies are small parts of much larger 
projects, in such cases, the results of these studies should 
be used and cited within papers that result from these 
larger research agendas. However, it appears that such 
advances are primarily published as methods reports, and 
are thereafter cited primarily by other methods reports, 
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but rarely by scholars delving into more theoretical 
research. As such, the abundance of data generated by 
automated remote sensing archaeologists may never 
find its way into larger-scale investigations that are the 
crux of archaeological inquiry. Thus, it is imperative that 
datasets procured by such work be incorporated into 
broader, interdisciplinary studies of the archaeological 
record; and doing so requires an engagement with 
theoretical frameworks from the social sciences (i.e., 
anthropology, archaeology, geography, etc.).

SUMMARY

Automated archaeological remote sensing has made 
incredible strides in the development of algorithms to 
locate a myriad of feature types from image datasets. 
The achievements of locating large architectural features 
can make further advances in archaeological research 
by helping to locate more ephemeral traces of human 
activity. In many cases, the detection of monumental 
structures (or other topographically distinct cultural 
heritage) can actually lead researchers to discover 
ephemeral cultural remains (e.g., Davis, Seeber and 
Sanger 2020; Klehm et al. 2019). The use of larger-scale 
cultural heritage as a proxy for detecting smaller scale 
heritage is certainly worthy of further emphasis in future 
studies. As the above discussion illustrates, researchers 
are beginning to make great strides in advancing the 
use of automated remote sensing methods for the 
documentation of the most difficult components of the 
archaeological record to identify.

Ultimately, the future of AI, machine learning, and 
other automation techniques within remote sensing 
archaeology is contingent upon what it can offer 

the discipline beyond data collection. Practitioners 
of this methodological niche must demonstrate the 
benefits that such approaches offer to the study and 
interpretation of the archaeological record, in addition 
to its documentation power. For example, automated 
methods can help redefine how archaeologists classify 
the materials we study. Instead of relying on “site-based” 
analyses, remote sensing data can be used to better 
account for multiple scales of anthropogenic activity 
that push beyond the bounds of “sites” or “features”, but 
rather encompass a myriad of deposits including micro-
scale artifact scatters, landscape-level transformations, 
and multi-temporal anthropogenic modifications that 
define human activity in a region.

With the ability of computer automation to 
consistently define units of measurement, these 
methods can also more concretely define the boundaries 
of “landscape” archaeology, as opposed to other forms 
of settlement studies. Kowalewski (2008) criticizes 
many “landscape” scale approaches to archaeology for 
their lack of unified organization, serving more as an 
“umbrella” or “junk-drawer” where virtually everything 
can be included. He argues that settlement patterns 
must be viewed as a living system that is bounded by 
specified scales within a particular place (Kowalewski 
2008). Automation may hold a solution to this critique. 
By standardizing units of measurement and means of 
archaeological identification, semantic consistency can 
aid in the explicit defining of landscape boundaries and 
characteristics, making “landscape” approaches less 
of a hodgepodge and more explicit in their theoretical 
assumptions. Furthermore, archaeological research can 
be replicated by different scholars at multiple scales 
of analysis because of such standardization. Not only 
does this improve archaeological research in terms of 

Figure 3 Top 10 publications of articles that cite automated remote sensing archaeology papers (Results from Web of Science search 
conducted on 2 March 2021).
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study design and reliability of results, but it can also 
aid in solving the problem of taphonomy, and how we 
approach components of the archaeological record that 
have been changed over the course of time.

Nonetheless, publications focused on the 
development of automated protocols often focus 
on the methods themselves and offer little concrete 
discussion of the implications that the method has for 
understanding important archaeological phenomena 
(cf., Cerrillo‐Cuenca and Bueno‐Ramírez 2019; Davis et al. 
2020b; Freeland et al. 2016; Klehm et al. 2019). While 
methods reports are invaluable for advancing the utility 
of automated procedures, great progress has been made 
in recent years leading to highly accurate protocols. 
While improvements can always be made, it is time for 
the methodological rigor afforded by automation to 
be applied to a wider set of phenomena than mounds 
and other large-scale cultural features (Figure 4). 
By integrating automated methods for the study of 
anthropogenic landscapes as a whole, we can advance 
our understanding of the archaeological record in a more 
complete manner by viewing the record as a system of 
interrelated components that provide information at 
different scales.

In sum, achievements made by those working on 
methodologically innovative research like automation 
should pass beyond methodological significance by 
directly informing larger research agendas (Figure 1). 
Thus, the advocation of automated remote sensing to 
push the boundaries towards ephemeral archaeological 
deposits is an extension of this argument: by extending 
the utility of these innovative data collection solutions, 
this “niche” of archaeological research can begin to 
impact the discipline’s most central questions and 
longstanding debates by documenting the presence 

and impact of underrepresented components of the 
archaeological record.

ADDITIONAL FILE

The additional file for this article can be found as follows:

•	 Supplementary Materials. Bibliographic Analysis in 
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